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In this paper, we study the effect of conscious knowledge on implicit sequence
learning. To do so, in three sequence learning experiments, we manipulated (1)
the extent to which instructions were intentional vs. incidental—intentional
participants were informed of the existence of sequential regularities, and (2)
the amount of explicit knowledge given to participants about the stimulus
material. Results indicated that explicit knowledge improves sequence learn-
ing, as indexed by an increase in reaction times when the training sequence is
unexpectedly replaced by another one. To enable us to differentiate between
implicit and explicit learning, we applied the process dissociation procedure in
a subsequent free generation task. Results indicated that both reaction time
and generation results were influenced by different levels of explicit knowl-
edge. However, we failed to find any evidence for an automatic influence on
generation performance. We also report on simulation studies using the simple
recurrent network, and show that the model can account for the effects of
explicit knowledge on both reaction time and generation performance.
Because the model uses a single pathway to process information, these simu-
lation results are suggestive that dissociations between implicit and explicit
learning might result from continuous, gradual changes in a single dimension
rather than from the involvement of different brain networks.

Introduction

In many everyday life situations, our ability to master a complex and
changing environment improves with no concurrent enhancement in our abil-
ity to accurately describe the relevant regularities. This particular type of
adaptation - which expresses itself in many domains, ranging from motor
performance to the processing of linguistic material - is generally attributed
to the operation of an implicit mode of learning that is further assumed to be
independent of explicit, hypothesis-driven learning processes. In this paper,
we aim to explore the relationships between implicit and explicit learning,
and, more specifically, to assess to what extent implicit learning occurs when
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participants know about the rules governing the environment they are con-
fronted with.

Implicit learning can be defined as the acquisition of new information
without intention to do so, and in such a way that the resulting knowledge is
difficult to express (Berry & Dienes, 1993; Cleeremans, Destrebecqz, &
Boyer, 1998). While different experimental paradigms have been used to
study implicit learning, some authors have pointed out that sequence learn-
ing is particularly well suited to do so because it provides us with truly inci-
dental learning conditions (Cleeremans, 1993b; Cleeremans & Jiménez,
1998). In sequence learning studies, participants are faced with a serial reac-
tion time (SRT) task in which they simply have to indicate as fast and as
accurately as possible the location of a stimulus presented on a computer
screen. Unknown to them, the sequence of stimuli involves some regularity.
Performance measures, such as faster reaction times for regular than for ran-
dom trials, clearly indicate that participants learn the sequence even if they
often fail to exhibit precise knowledge of the repeating pattern. However, the
ability to learn without awareness has been the object of numerous contro-
versies, ranging from quarrels about how one should define consciousness to
methodological debates about to best measure and contrast implicit and
explicit learning (Perruchet & Amorim, 1992; Shanks & St. John, 1994). 

As a result of these conceptual challenges, some authors have suggested
that we should focus on the processes engaged in implicit learning rather
than on the conscious or unconscious nature of the acquired knowledge
(Frensch, Lin, & Buchner, 1998). In line with this idea, it has been proposed
that a fruitful strategy through which to contrast implicit and explicit learn-
ing consists of comparing performance between intentional participants,
(who are instructed to attempt to discover the regularities present into the
sequence), and incidental participants (who are given neutral instructions that
do not refer to a systematic pattern). Using this procedure, previous studies
have indicated that intentional instructions improve sequence learning
(Curran, 1997; Curran & Keele, 1993; Frensch & Miner, 1994). Other
reports, however, have shown that this facilitation disappears when the
sequence involves probabilistic regularities (Jiménez, Méndez, &
Cleeremans, 1996); therefore suggesting that intention to learn interacts with
the complexity of the material to be learned.

Other functional studies have further contributed to characterize implicit
sequence learning as a robust and powerful process that is relatively inde-
pendent of attentional resources, stimulus complexity or task demands
(Cleeremans, 1997; Hsiao & Reber, 1998; Jiménez & Méndez, 1999, 2001;
Stadler, 1995). As recently pointed out by (Willingham & Goedert-
Eschmann, 1999), however, only but a few studies have focused on the rela-
tionship between implicit and explicit learning.

CONSCIOUS KNOWLEDGE AND SEQUENCE LEARNING
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The goal of this study is to further explore the nature of the relationship
between implicit and explicit learning. We conducted a series of sequence
learning experiments in which (1) we compared incidental and intentional
instructions, and in which (2) we manipulated how much explicit knowledge
was given to participants prior to their performing the SRT task. In both
cases, we measured the effects of the experimental manipulation on both
implicit and explicit sequence learning. To obtain the relative contribution of
implicit and explicit learning, the process dissociation procedure (Jacoby,
1991; see below) was used in two of our three experiments.

The nature of the relationship between implicit and explicit learning is a
rather complex issue because different types of relationships might be con-
sistent with the data. In particular, implicit and explicit learning might either
depend on distinct, independent processing systems, or might instead simply
reflect different aspects of a single set of learning mechanisms. When
assumed to depend on dissociable systems, implicit and explicit learning
might further operate either in parallel, or instead stand in a mutually exclu-
sive relationship (see Figure 1). To further complicate matters, these differ-
ent possibilities might prove to be equivalent under some conditions, thus
making it difficult to differentiate between them based on behavioural data
alone.

As a case in point, consider the recent study by Willingham and Goedert-
Eschmann, who trained two groups of intentional and incidental participants
in a SRT task using a 12-element repeating sequence. The final practice
block involved both random and sequenced trials. For half of the participants
in both incidental and intentional groups these sequenced trials correspond-
ed either to the training sequence or to a different 12-element sequence. To
measure implicit learning, the authors computed a “learning score” by sub-
tracting the mean reaction time elicited by sequenced trials from the mean
reaction time elicited by random trials in the final block of practice. Learning
scores were larger for participants who had been presented with the same
sequence throughout training but did not differ between incidental and inten-
tional participants. Intentional instructions had no effect on implicit learning
scores, but intentional participants performed better than incidental partici-
pants in an explicit free recall test. Willingham and Goedert-Eschmann there-
fore concluded that implicit and explicit sequence learning occur in parallel.

Importantly, these results further imply that implicit and explicit learning
processes are subtended by different neural systems (Willingham, 1998).
This conclusion is supported by brain imaging studies showing that very dif-
ferent brain networks are activated by implicit and explicit modes of learn-
ing (Grafton, Hazeltine, & Ivry, 1995; Rauch et al., 1995). Crucially, howev-
er, these studies have also suggested that implicit and explicit learning sys-
tems do not operate in parallel, but that they are instead mutually exclusive. 
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Indeed, the brain regions associated with implicit and explicit learning tend-
ed to be activated separately, suggesting that implicit learning processes
cease to contribute to performance as soon as explicit knowledge is involved.

Other authors have instead suggested, based on simulation studies, that the
dissociation between implicit and explicit processing could be captured with-
in a unique system. According to this view, accessibility to consciousness
depends on different aspects of the acquired knowledge, such as the distinc-
tiveness or stability in time of the corresponding representations (Mathis &
Mozer, 1996; O’Brien & Opie, 1999). Likewise, it has been recently sug-
gested that the differences between implicit and explicit learning might be
best characterized as resulting from continuous, gradual changes in a single
dimension involving “quality of representation” (Cleeremans & Jiménez,
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Figure 1. This figure illustrates that implicit and explicit forms of learning
can be based either on a single or on two different mechanisms. In this latter
case, both mechanisms can stand in a mutually exclusive relationship:
implicit and explicit knowledge do not reflect similar aspects of the environ-
ment, or they can influence performance in parallel: a specific piece of
knowledge has been acquired implicitly and explicitly at the same time and
influence performance simultaneously. By contrast, in a single process view,
implicit and explicit learning reflect different aspects of a single set of learn-
ing mechanisms. In this framework, accessibility to consciousness depends
on different aspects of the acquired knowledge, such as the distinctiveness,
stability in time, or the quality of the corresponding representations.
Conscious and unconscious influences are therefore mutually exclusive as
they stem from different components of a single knowledge base about the
environment.
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2002). Thus, stable, strong, and distinctive representations will tend to be
associated with different behavioural and phenomenal correlates than weak-
er representations, such as, for instance, improved availability to conscious
control and to meta-knowledge. Kinder and Shanks (2003) made a similar
claim in the field of neuropsychological dissociations. These authors have
shown that the memory impairments associated with amnesia can be
accounted for within a single-system connectionist model of learning in
which amnesia is simply simulated by a reduced learning rate. According to
Kinder and Shanks different memory systems are thus not required to
account for dissociations between normal and amnesic subjects.

To further explore the relationship between implicit and explicit learning,
we examine in a series of experiments whether increasing levels of explicit
knowledge leave the implicit influences measure (i.e. the exclusion scores,
see below) unaffected —suggesting that implicit and explicit learning are
independent from each other), or whether implicit influences during genera-
tion tend to decrease when participants are given more explicit knowledge
about the sequence—suggesting that implicit and explicit learning might be
mutually exclusive. To assess the relative contribution of implicit and explic-
it learning, we applied the process dissociation procedure (Jacoby, 1991) to
a subsequent free generation task.

The process dissociation procedure, as applied to sequence learning tasks
(see Destrebecqz & Cleeremans, 2001), is based on comparing performance
in two generation tasks—inclusion and exclusion—that differ only by the
instructions given to participants. In the inclusion task, participants are told
to try to reproduce the training sequence. Performance in this task can
depend either on explicit recollection or on guessing based on intuition or
familiarity. Hence, both implicit and explicit knowledge can contribute to
inclusion performance. By contrast, in the exclusion task, participants are
told to produce a sequence of stimuli that differs as much as possible from
the training sequence. Implicit and explicit influences are thus now set in
opposition, for to successfully avoid reproducing the sequence, one has to
consciously retrieve its regularities so as to be able to produce some other
sequential transitions. Of course, one can also exclude based on a mere feel-
ing of familiarity, which may not be associated with explicit recollection of
the sequence. In other words, one may estimate that a given response would
reproduce the training sequence without remembering that response explic-
itly, and, based on this (explicit) feeling of familiarity, conservatively decide
to generate a different transition. This is precisely why applying the process
dissociation procedure to a free generation task makes it possible to dissoci-
ate conscious and unconscious knowledge acquisition: If participants keep
generating the training sequence against exclusion instructions, one can safe-
ly assume that such performance only reflects the automatic influence of
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unconscious knowledge1 (for a discussion on this issue, see also Richardson-
Klavehn, Gardiner, & Java, 1996).

Experiment 1

The goal of this experiment was to measure the influence of orientation to
learn on the indirect measure of sequence learning, i.e., the cost in reaction
time that is incurred when the repeating sequence is unexpectedly replaced
by another one.

Method

The experiment consisted of a four choice reaction time task involving
7 blocks of 96 trials, for a total of 672 trials. The reduced number of trials
was used in order to limit the acquisition of explicit knowledge by inciden-
tal participants. On each trial, a black dot appeared at one of four possible
locations on a computer screen. For each trial, participants were to press as
fast and as accurately as possible on the key that corresponded to the loca-
tion at which the target had appeared. The mapping between keys and stim-
ulus locations was fully compatible. Errors were signalled through the emis-
sion of a short beep, but did not need to be corrected. Instructions stressed
the importance of fast reaction times and indicated that a small amount of
errors was tolerated. The response-stimulus interval was set to 120 ms.
Participants practiced the task for 60 random trials before the first block.

Sequences of successive target locations were determined based on the
repetition of a 12-element sequence that consisted of four different elements
(hereafter a, b, c, and d). The same sequence was repeated over the first 6
blocks. Each block started with a different initial element. Block 7 consisted
of eight repetitions of a different sequence (see below). A significant increase
in reaction time was expected during block 7 if participants had learned the
regularities of the training sequence.

The experiment involved two conditions. In the incidental condition, par-
ticipants were not informed of the fact that the sequence of targets was reg-
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implicit and explicit influences on performance with the process dissociation procedure. These
models reflect the different hypothetical possible relationships between both influences.
However, this question is very controversial and, in order to circumvent this issue, we based our
adaptation of the PDP on the comparison between inclusion and exclusion performance only
(see also Neal & Hesketh, 1997).
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ular. In the intentional condition, participants were told that the sequence of
stimuli was not random, and were asked to try to identify those regularities
so as to improve their performance in the SRT task. We hypothesized that if
an intentional orientation to learn improves sequence learning, the increase
in reaction time in the transfer block should be more important in the inten-
tional than in the incidental condition.

Subjects

Forty participants aged 18-26 years, all undergraduate students at the
Université Libre de Bruxelles, were randomly assigned to one of the two
experimental condition and paid €6.

Material

The experiment was run on a Macintosh computer. The display consisted
of four dots arranged in a horizontal line on the computer’s screen and sepa-
rated by intervals of 3 cm. Each screen position corresponded to a key on the
computer’s keyboard. The spatial configuration of the keys was fully com-
patible with the screen positions. The stimulus was a small black circle
0.35 cm in diameter that appeared on a white background, centred 1 cm
above one of the four dots.

Sequential Material

Participants were presented with the following training sequence: a b c d
a c b a d b d c. The structure of the transfer sequence presented during the
seventh block was d b c a d c b d a b a c. A 4✕4 Latin square design was
used to balance the correspondence between the letters and the four screen
locations. In both conditions, one of the four different 12-element training
sequences and the corresponding transfer sequence (see Table 1) was ran-
domly attributed to each participant. The sequences consisted entirely of so-
called “second order conditional” transitions or SOCs (Reed & Johnson,
1994). With SOC sequences, two elements of temporal context are always
necessary to predict the location of the next stimulus. In other words, each
element can be preceded or followed by any of the three other elements. Both
training and transfer sequences were balanced for stimulus locations and
transition frequency, but differed in terms of the subsequences of three ele-
ments that they contained. For instance, the transition ‘34’ was followed by 
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location 3 in the training sequence A and by location 2 in the transfer
sequence A.

Results and Discussion

Errors in the SRT task did not exceed 4% of the trials in both conditions
and were excluded from data analysis. Figure 2 shows the average reaction
time obtained over the entire experiment, plotted separately for the two con-
ditions. Inspection of the figure suggests that intentional participants perform
better than incidental participants. An analysis of variance (ANOVA) on the
first six blocks of the SRT task with Practice [6 levels] as a within-subject
variable and Condition [two levels] as a between-subjects variable revealed a
significant Practice ✕ Condition interaction [F (14, 308) = 2.751, p < 0.001,
Mse = 1110.455]. The simple effect of Condition was only marginally sig-
nificant [F (1,38) = 3.154, p = .08, Mse = 118228.969]. There was no reli-
able effect of Practice2.

The increase in reaction time during Block 7 suggests that participants
have learned the sequence in both conditions. Another ANOVA with Block
[2 levels, Blocks 6 and 7] as a within-subjects variable and Condition [two
levels] as a between-subjects variable revealed a significant effect of Block
[F (1,38) = 82.346, p < .0001, Mse = 90749.267] and a significant Block ✕
Condition interaction [F (1,38) = 9.404, p < .005, Mse = 10363.251]. The
effect of Condition did not reach significance.

This analysis shows that the reaction time cost incurred by the transfer
block is more important in the intentional than in the incidental condition.
This result suggests that sequence learning is improved in the former condi-
tion, and is in line with previously reported results with other types of
sequential regularities (Curran & Keele, 1993; Curran, 1997).

CONSCIOUS KNOWLEDGE AND SEQUENCE LEARNING
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2 A non-significant effect of practice has previously been reported in the literature for limit-

ed amounts of training (Perruchet, Bigand, & Benoit-Gonnin, 1997), and does not necessarily
reflect the absence of sequence learning, as indicated by the transfer effect during Block 7 in
Experiment 1.

Table 1. Training And Transfer Sequences

Training Transfer

Sequence A 1 4 2 3 1 2 4 1 3 4 3 2 1 4 1 2 3 4 2 1 3 2 4 3

Sequence B 2 1 3 4 2 3 1 2 4 1 4 3 2 1 2 3 4 1 3 2 4 3 1 4

Sequence C 3 2 4 1 3 4 2 3 1 2 1 4 3 2 3 4 1 2 4 3 1 4 2 1

Sequence D 4 3 1 2 4 1 3 4 2 3 2 1 4 3 4 1 2 3 1 4 2 1 3 2
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To further analyze the transfer effect, we measured the individual transfer
effect associated with each of the twelve SOC transitions (Reed & Johnson,
1994; Shanks & Johnstone, 1998). To perform this analysis, we simply sub-
tracted the mean reaction time associated with the third element of a given
triplet of the training sequence in the sixth block (e.g., bd-c) from the reac-
tion time associated with the third element of the same transition in the trans-
fer sequence (e.g., bd-a). We performed T tests to assess which SOC transi-
tions were associated with a significant transfer effect, and hence with sig-
nificant sequence learning.

Figure 3 shows the transfer effects measured for the twelve SOC transi-
tions, represented on the horizontal axis according to the abstract structure of
the training sequence. Significant transfer effects are indicated with an aster-
isk. The figure indicates that, in both conditions, participants only learn a
subset of the sequential transitions. The transfer effect is significant, or mar-
ginally significant, for three (incidental condition) and for eight (intentional
condition) of the twelve sequential transitions, suggesting that sequence
learning was improved in the latter condition. However, the figure makes it 
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Figure 2. Mean reaction times for each training block, plotted separately for
incidental and intentional participants.
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clear that intentional instructions did not influence sequence learning quali-
tatively, as indicated by the similarity of the transfer curves. These impres-
sions were confirmed by an ANOVA conducted on reaction time differences
between blocks 6 and 7, with Transitions (12 levels) as a within-subject fac-
tor and Condition (2 levels) as a between-subjects factor. This analysis
revealed a significant effect of Condition [F (1,38) = 10.684, p< .005,
Mse = 258378.865], and of Transitions [F (11,418) = 8.641, p < .0001,
Mse = 163104.484]. The Condition ✕ Transitions interaction was not signif-
icant.
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Figure 3. Mean transfer effects for the twelve locations of the training
sequence plotted separately for the incidental and intentional conditions.
Each data point corresponds to the reaction time difference between the
transfer and the training sequence for a specific transition. For instance the
rightmost data point corresponds to the mean reaction time associated with
stimulus a that follows the transition bd- in the seventh block minus the mean
reaction time associated with the location c that follows the same transition
bd- in the sixth block of training. Note. * indicates a significant increase in
reaction time (p < .05), (*) a marginally significant difference (p < .06)
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To summarize, the results of this experiment show that participants were
able to learn sequential regularities as complex as second order contingencies
despite the relatively short amount of practice (48 repetitions of the training
sequence). Further, while intentional instructions improved performance,
they did not influence sequence learning qualitatively, as suggested by the
detailed analysis of the transfer effect for the twelve transitions. In short, par-
ticipants in both conditions learn something about the stimulus material, and
intentional participants simply appear to learn more about it than incidental
participants do. In Experiment 2, we explore to what extent the difference
between incidental and intentional learning instructions can be attributed to
an increase of explicit knowledge acquisition.

Experiment 2

To make it possible to differentiate between implicit and explicit sequence
learning, Experiment 2 participants performed a free generation task under
inclusion and exclusion instructions after training on the main SRT task. As
for Experiment 1, half of the participants performed the choice reaction time
task under incidental instructions and the other half under intentional instruc-
tions. Based on the results of experiment 1, we hypothesized that participants
in both conditions would learn the sequence and be able to reproduce it under
inclusion instructions. We also hypothesized that participants in the inciden-
tal condition (under the assumption that learning is completely implicit in
this condition), would lack control over their knowledge and hence fail to be
able to avoid producing the regularities of the training sequence when per-
forming the generation task under exclusion instructions. This should not be
the case in the intentional condition (under the assumption that learning
includes explicit components in this condition), and we therefore expected
these participants to be better able to avoid reproducing the training sequence
when performing the generation task under exclusion instructions.

Method

The experiment was divided in two phases. The first phase consisted of a
four choice reaction time task identical to Experiment 1, except that there
was no transfer block. Participants performed the task for six blocks of 96 tri-
als. Each block consisted of eight repetitions of the same 12-element SOC
sequence. As for Experiment 1, half of the participants were given intention-
al instructions prior to the SRT task and the other half performed the task
under incidental instructions.

CONSCIOUS KNOWLEDGE AND SEQUENCE LEARNING
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After the SRT task, participants were informed that the dots had followed
a repeating pattern. They were then presented with a single stimulus that
appeared in a random location, and asked to freely generate a series of 96 tri-
als that “resembled the training sequence as much as possible”. They were
told to rely on intuition when feeling unable to recollect the location of the
next stimulus. After this generation task—performed under inclusion instruc-
tions—subjects were asked to generate another sequence of 96 trials, this
time under exclusion instructions. They were told they now had to try to
avoid reproducing the sequential regularities of the training sequences. In
both generation tasks, subjects were also told not to repeat responses. The
stimulus moved whenever subjects had pressed one of the keys, and appeared
at the corresponding location after a delay of 120 ms.

Subjects

Twenty-four participants aged 18-26 years, all undergraduate students at
the Université Libre de Bruxelles, were randomly assigned to one of two
experimental condition and paid € 6.

Results and Discussion

SRT task. In both conditions, errors were below 3% of the trials and were
excluded from data analysis. Figure 4 (left panel) shows the average reaction
times obtained over the six blocks of practice plotted separately for the two con-
ditions. As for Experiment 1, reaction times appear to be faster and to decrease
more with practice in the intentional than in the incidental condition. These
impressions were confirmed by an analysis of variance (ANOVA) conducted on
reaction times with Practice [6 levels] as a within-subject variable and Condition
[two levels] as a between-subjects variable. This analysis revealed a significant
effect of Condition [F (1,22) = 33.525, p < .001, Mse = 290315.336] and a sig-
nificant Practice ✕ Condition interaction [F (5,110) = 3.124, p < .05,
Mse = 2662.893]. The main effect of Practice did not reach significance2. These
results are in line with those of Experiment 1 and suggest that intentional
instructions improve sequence learning in the same way in Experiment 2.

Generation task. As each SOC transition involves three consecutive ele-
ments, we computed the number of generated chunks of three elements that
were part of the training sequence in both inclusion and exclusion tasks to
measure generation performance. As the generated sequences were 96 trials
long, the maximum number of correct chunks is 94. To obtain inclusion and
exclusion scores for each participant, we therefore divided the corresponding

CONSCIOUS KNOWLEDGE AND SEQUENCE LEARNING



229

number of correct chunks by 94.
Figure 4 (right panel) shows average inclusion and exclusion scores for

both conditions. An ANOVA with Condition (incidental vs. intentional) as a
between-subjects variable and Instructions (inclusion vs. exclusion) as a
within-subject variable revealed a significant effect of Instructions
[F (1,22) = 14.553, Mse = 0.239, p < .001]. Neither the main effect of
Condition nor the Condition ✕ Instructions interaction reached significance.

As participants were told not to produce repetitions, chance level can be
set at 0.33. Two-tailed t tests were used to compare generation scores to
chance level. Inclusion scores are above chance level in both conditions
[mean=0.52, SE=0.04, t (11)=4.79, p< 0.001 and mean=0.52, SE=0.05, t
(11)=3.89, p<0.01 for the incidental and the intentional condition respective-
ly]. Exclusion scores did not differ from chance level in the incidental con-
dition [mean=0.35, SE=0.04, t (11)=0.61] but were reliably above chance in
the intentional condition [mean=0.41, SE=0.03, t (11) = 3.01, p < 0.05]. At
first sight, these results seem to suggest that generation performance depends
partly on unconscious influences in the intentional but not in the incidental
condition in which learning appears to be essentially explicit. However, there
are good reasons to believe that the use of 33% as baseline might overesti-
mate sequence learning (Reed & Johnson, 1994). For example, participants
may learn that the training sequence contains only one reversal (3-4-3, 4-1-
4,1-2-1 or 2-3-2) and, based on this information, avoid or increase reversal
responses in the inclusion or exclusion task respectively. In that case, chance
level would be different from 33% even if participants did not acquire SOC
knowledge as such (Shanks & Johnstone, 1999).
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Figure 4. Mean reaction times for each training block, plotted separately for
incidental and intentional participants (left panel). Mean inclusion and exclu-
sion scores for incidental and intentional participants (right panel).
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Therefore, to further analyze generation performance, we also computed,
for each participant, the number of generated triplets that corresponded to the
transfer sequence. Indeed, recall that training and transfer sequences differed
in terms of their SOC transitions but were balanced for all other sequential
regularities. If participants learn the SOC transitions of the training sequence,
they should produce these triplets more frequently than those of the transfer
sequence in the inclusion task. This is the pattern of results that we observed
in both incidental [paired t (11) = 3.90, p < .01] and intentional [paired
t (11) = 2.43, p < .05] conditions. Moreover, if sequential knowledge has
been acquired explicitly during the SRT task, participants should be able to
control their behaviour and be able to avoid producing more triplets from the
training sequence than from the transfer sequence in the exclusion task. We
also observed this result in both incidental [paired t (11) = 0.97, p > .3] and
intentional conditions [paired t (11) = 1.44, p > .1].

To summarize, according to this analysis, sequence learning appears to be
explicit in both conditions. Indeed, participants were simultaneously (1) able
to project their knowledge in the inclusion task, and (2) able to avoid repro-
ducing the training sequence when so instructed in the exclusion task. These
results stand in contrast with the idea that sequence learning depends on
unconscious knowledge acquisition under incidental instructions, and instead
suggest that sequence learning occurs explicitly. Previous studies, however,
have shown that sequence learning can occur implicitly when participants are
prevented by the training conditions to become aware of the systematic pat-
tern. This might be the case, for instance when a secondary task is performed
during the SRT task (Goschke, 1997, 1998), when the pace of the SRT task
is too sustained to allow participants to anticipate the apparition of the next
element (Destrebecqz & Cleeremans, 2001), or when using complex proba-
bilistic sequential regularities (Jiménez et al., 1996).

As previously reported in the literature (Buchner, Steffens, Erdfelder, &
Rothkegel, 1997; Curran, 1997; Curran & Keele, 1993; Frensch & Miner,
1994), intentional participants responded faster in the SRT task. Generation
results, however, do not indicate that this reaction time difference can be
attributed to an increase of explicit learning in the intentional condition.
Rather, in both conditions, participants acquired explicit knowledge as com-
plex as SOC transitions after only 48 sequence presentations and obtained
comparable generation scores. This result contrasts with previous reports
indicating improved performance under intentional instructions in continu-
ous generation (Frensch & Miner, 1994) or recognition tasks (Buchner et al.,
1997; Curran, 1997). A possible explanation might be that the generation
task, in contrast with the SRT task, is not sufficiently sensitive to reveal qual-
itative dissociations between intentional and incidental conditions. To
increase the contrast between training conditions, we explored, in
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Experiment 3, the effect of different levels of explicit knowledge on direct
and indirect measures of sequence learning.

Experiment 3

In this experiment, participants were informed about the exact sequential
regularities of the material prior to the SRT task. We compared participants’
performance in two conditions: In the “limited knowledge” (henceforth, LK)
condition, participants were asked to study the sequence during a limited
time. In the “full knowledge” (henceforth, FK) condition, they had to learn
the sequence until they knew it perfectly. Sequence learning was measured
through the cost in reaction time during a transfer block of the SRT task, and
through generation performance under inclusion and exclusion instructions.
We expected that direct and indirect measures of sequence learning would be
improved for participants who had perfect knowledge of the sequence.

Method

Participants were first given SRT task instructions and performed 60 ran-
dom practice trials. They were then presented with the 12-element sequence
depicted on a sheet of paper. Each of the 12 stimuli was indicated by a black
dot occupying one of four locations. In the LK condition, participants were
allowed to observe and learn the sequence for 2 minutes. In the FK condi-
tion, participants had to learn the sequence perfectly: They had to be able to
describe the sequence without any error before being introduced to the SRT
task.

Participants subsequently performed seven blocks of a four-choice reac-
tion time task. Each of the first six blocks corresponded to eight repetitions
of a 12-element sequence. A different sequence was used in the seventh
block. The details of the procedure and the sequential material were identi-
cal to Experiments 1 and 2. After the SRT task, participants were introduced
to the inclusion and exclusion tasks. The procedure was identical to
Experiment 2 3.
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3 Contrary to Experiments 1 & 2, we measure sequence learning indirectly (through a trans-

fer block in the SRT task) and directly (through generation performance) in a within-subject
design. Indeed, given the pre-training in Experiment 3, there was no doubt that participants knew
the training sequence by the end of the SRT task and we were therefore less concerned by a
potential contamination of generation performance due to the presentation of the transfer
sequence in the last block of the SRT task.
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Subjects

Thirty participants aged 18-26 years, all undergraduate students at the
Université Libre de Bruxelles took part to this experiment and were paid € 6.
Fifteen were assigned to the LK condition and fifteen to the FK condition.

Results and Discussion

SRT task. In both conditions, errors were below 3% of the trials and were
excluded from data analysis. Figure 5 shows the average reaction times
obtained over the seven blocks of practice plotted separately for the two con-
ditions. To analyze reaction time data, we first performed an analysis of vari-
ance (ANOVA) with Condition as a between-subjects factor [2 levels] and
Practice [6 levels, blocks 1-6] as a within subject factor. This analysis
revealed a significant effect of the factors Condition [F (1,28) = 10.033,
Mse = 368798.248, p < .005] and Practice [F (5,140) = 5.436,
Mse = 1629.459, p < .0001]. The Practice ✕ Condition interaction was not
significant (F < 0.5).
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Figure 5. Mean reaction times for each training block, plotted separately for
the LK and FK conditions.
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To analyze transfer, we performed another ANOVA with Blocks as a with-
in subject factor [2 levels, the sixth and seventh blocks] and Condition as a
between subjects factor [2 levels]. This analysis showed a significant effect
of Blocks [F (1,28) = 33.821, Mse = 5327.925, p < .0001] and of Condition
[F (1,28) = 5.395, Mse = 10640.333, p < .05]. The Blocks ✕ Condition inter-
action failed to reach significance (F < 2.6).

The significant transfer effect is not surprising given that participants
knew the sequence before the SRT task. Faster reaction times in the FK con-
dition suggest that perfect explicit knowledge improves performance.
Transfer, however, was not significantly larger in the FK condition.

As for Experiment 1, we also performed T tests to analyze transfer for
each of the twelve SOC transitions. This analysis showed that the increase in
reaction time is significant or marginally significant for nine of the twelve
transitions in the LK and in the FK conditions (see Figure 6). An analysis of
variance (ANOVA) conducted on transfer effects measured for the twelve
transitions with Transitions (12 levels) as a within subject factor and
Condition (2 levels) as a between subjects factor revealed a significant effect

CONSCIOUS KNOWLEDGE AND SEQUENCE LEARNING

Figure 6. Mean transfer effects for the twelve locations of the training
sequence plotted separately for the LK and FK conditions. Note. * indicates
a significant increase in reaction time (p < .05), (*) a marginally significant
difference (p < .07)
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of Transition [F (11,308) = 4.031, Mse = 95518.711, p < .0001] and a mar-
ginally significant effect of Condition [F (1,28) = 3.266, Mse = 446965.442,
p = .08]. This analysis confirms that transfer differs for the different transi-
tions but is qualitatively equivalent for the two conditions.

Generation task. Figure 7 shows inclusion and exclusion scores for the FK
and LK conditions. We conducted an ANOVA on inclusion and exclusion
scores (computed as for Experiment 2) with Condition [2 levels] as a
between-subjects factor and Instructions [2 levels] as a within-subject factor.
This analysis revealed a significant effect of Instructions [F (1,28) = 93.009,
Mse = 1.897, p < .0001] and Condition [F (1,28) = 15.874, Mse = 0.151,
p < .0005]. The Condition ✕ Instructions interaction also reached signifi-
cance [F (1,28) = 21.668, Mse = 0.442, p < .0001]. Planned comparisons fur-
ther indicated that inclusion scores exceed exclusion scores in both the LK
[F (1,14) = 10.983, Mse = 0.254, p < .01] and the FK conditions
[F (1,14) = 117.951, Mse = 2.086, p < .0001]. In the inclusion task, FK par-
ticipants produced more regularities (mean = 0.860, SE= 0.030) from the
training sequence than LK participants did (mean = 0.589, SE= 0.043)
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Figure 7. Mean inclusion and exclusion scores computed in the LK and FK
conditions.
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[F (1,28) = 26.127, Mse = 0.555, p < .0001]. The opposite pattern was
observed under exclusion instructions, with LK participants producing more
chunks from the training material (mean = 0.405, SE=0.019) than FK partic-
ipants did (mean = 0.333, SE=0.028) [F (1,28) = 4.399, Mse = 0.038,
p < .05]. Overall, these results indicate that inclusion and exclusion perfor-
mance tend to reflect differences in explicit knowledge between LK and FK
conditions: Participants exert more control on their sequential knowledge in
the FK than in the LK condition.

We also compared inclusion and exclusion scores to chance level (0.33).
Inclusion scores are above chance level in both conditions [t (14)=5.95, p<
0.001 and t (14)=17.83, p<0.001 for the LK and FK condition respectively].
Exclusion scores did not differ from chance level in the FK condition
[t (14)=0.12] but were reliably above chance in the LK condition [t (14) =
3.86, p < 0.01]. However, neither in the LK [paired t (14) = 0.6, p > .55] nor
in the FK condition [paired t (14) = -0.973, p > .35] did participants tend to
more frequently produce the regularities of the training sequence than those
of the transfer sequence in the exclusion task. These results indicate that, just
as for Experiment 2, generation performance does not depend on uncon-
scious knowledge influence.

To summarize, in all four conditions of these experiments (incidental,
intentional, LK, and FK), participants appear to have learned the sequence
explicitly. They were indeed able to control the expression of their knowl-
edge and to conform to the instructions of the generation task. The results of
these experiments also suggest that increased level of explicit knowledge
improve sequence learning. Intentional participants were faster than inciden-
tal participants and showed increased transfer. FK participants responded
faster than LK participants, and also produced more training triplets in inclu-
sion, and fewer training triplets in exclusion than LK participants. Regardless
of their level of explicit knowledge, participants did not tend to reproduce the
regularities of the training sequence under exclusion instructions. In the next
section, we present simulation results showing how the results summarized
above can be accounted for within a single processing pathway.

Simulations

What might be the cognitive processes subtending sequence learning in
our study? While a few novel computational models have been recently pro-
posed to account for human performance in this task (Dominey, 1998; Sun,
Merrill, & Peterson, 2001; Wallach & Lebiere, 2003), in this paper, we focus
on the Simple Recurrent Network (SRN) first proposed by (Elman, 1990)
and subsequently adapted by (Cleeremans & McClelland, 1991) to sequence
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learning. This model has been widely used to simulate human performance
in SRT tasks (Cleeremans, 1993) and in other implicit learning paradigms,
such as artificial grammar learning (Dienes, Altmann, & Gao, 1999; Kinder,
2000). The SRN is a connectionist network that is trained through back-prop-
agation to predict the next element of a sequence based on the current ele-
ment and on a representation of the temporal context that the model has elab-
orated itself through training.

To achieve this task, the network is endowed with a pool of context units,
which, on each trial, hold a copy of the pattern of activation that existed over
the network’s hidden units during the previous time step (see Figure 8).
During training, the SRN progressively improves its prediction performance
by developing sequential representations that take into account an increasing
number of context elements. To simulate reaction times, Cleeremans and
McClelland (1991) assumed that the activation of the output unit corre-
sponding to the next element is related to the level of preparation to the next
stimulus in human participants. Strong prediction responses thus correspond
to higher activation of the corresponding output unit, and to shorter reaction
times. Based on this simple assumption, the associative learning processes
implemented in the SRN have been shown to provide an adequate account of
human performance in many sequence learning experiments.

As we recognize elsewhere (Destrebecqz & Cleeremans, 2003), however,
the SRN suffers from important shortcomings. The fact that the SRN exclu-
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Figure 8. The Simple Recurrent Network (SRN).
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sively produces prediction responses is indeed inconsistent with practice of
the choice reaction time task, in which participants have simply to locate the
current target (we do not discuss this problem here, but see Destrebecqz &
Cleeremans, 2003). Moreover, it also makes it impossible for the SRN to
account for the difference between identification (performed in the SRT task)
and prediction (as in the generation task)—a limitation that makes it, in prin-
ciple, impossible for the SRN to simulate both SRT performance and gener-
ation performance in our experiments. 

To make it possible for the SRN to capture generation results, we simply
interpreted the pattern of activations of the output units as a series of poten-
tial successors in the production of a sequence of stimuli rather than as prepa-
ration to the next element in a SRT task (Christiansen & Chater, 1999). We
used the usual procedure to simulate the SRT task, and the model was trained
on the same material as participants. Afterwards, learning was blocked in the
network to simulate generation performance. Indeed, no feedback was given
during this task. As for participants, the simulation of the generation task
begins by the presentation of a randomly chosen stimulus to the network.
One of the prediction responses the network produces is then selected based
on activation at the output level. This response is then presented as the next
stimulus to the SRN by setting the activation of the corresponding input unit
to 1.0 and the activation of the other input units to zero. The same procedure
is used for every trial in both inclusion and exclusion, but the response selec-
tion procedure differs between both tasks. In inclusion, the next stimulus cor-
responds to the most activated output unit at the previous trial. In exclusion,
that particular response is excluded from the pool of potential successors,
and the next stimulus is chosen randomly between the other possible
responses. To remain consistent with the instructions given to participants,
repetitions of the same stimulus were also excluded as potential responses in
both tasks. With these assumptions in place, we will now describe simulation
studies that explore the influence of prior sequential knowledge on reaction
time and generation performance.

Simulation Method

Simulations of Experiments 1 and 2 will be presented jointly. Indeed, we
considered that the four conditions included in these two experiments repre-
sent four levels of prior explicit knowledge: Incidental participants of
Experiment 1 did not know anything about the sequence before the SRT task;
intentional participants from the same experiment knew that the sequence
was regular but they were not presented with it before the task; participants
in the LK condition were presented with the sequence for a limited time, and
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participants in the FK condition knew it perfectly before the task. Given that
there is no simple way of accounting for intentional orientation to learn, we
only simulated the incidental, LK, and FK conditions. Each network had four
input units and four output units, each corresponding to one of the four tar-
get locations. The hidden and context layers consisted of 15 units. The model
was trained on the same material and, apart from the pre-training involved in
simulating the LK and FK conditions, for the same number of trials as human
participants (see Appendix for the detailed parameters used in these simula-
tions).

Results and Discussion

During training, the activation of the output unit corresponding to the next
stimulus was transformed into Luce ratios (Luce, 1963) and then subtracted
from 1.0 to make increases in response strength consistent with reductions in
reaction time. To facilitate comparisons, the networks’ responses and human
reaction times were transformed into z-scores with respect to their respective
entire distributions.

Figure 9 shows human and simulated reaction times for the three condi-
tions. The model appears to be able to qualitatively approximate human per-
formance. Indeed, increased levels of prior knowledge results in improved

CONSCIOUS KNOWLEDGE AND SEQUENCE LEARNING

Figure 9. Human and simulated reaction times for the incidental, LK, and FK
conditions. All data have been separately transformed into z-scores based on
the data obtained for each source over the three conditions
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performance. Further, transfer to a different sequence during the seventh
block exerts a detrimental effect on performance. Simulated reaction times
decreased more with practice than in human participants and the transfer
effect is more pronounced in the simulated FK condition but these observa-
tions might be attributed to motor performance effects rather than to differ-
ences in learning. Even with our very simple assumptions, it is worth point-
ing out that, over the entire data set, the model accounts for about 85% of the
variance in SRT data (R2 = .87).

To further study the effect of the training regimen on learning, we com-
puted the sum of the absolute values of the connection weights after the SRT
task was completed. Because connections weights grow (positively or nega-
tively) in magnitude during training, the sum of the weights between any two
pools of units provide a measure of the influence exerted by the sending units
on the receiving units. Comparing the global magnitude of the weights
between different pools of units in different conditions can then provide us
with an estimation of the relative importance of different sources of infor-
mation (Cleeremans, 1997).

Figure 10 shows that the main effect of the pre-training in the LK and FK
conditions is an increase in the magnitude of the connection weights between
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Figure 10. Summed absolute weights on connections of the SRN, represen-
ted separately for the three simulated conditions and for connections coming
from the sequential context and the current stimulus to the hidden units, and
from the hidden units to the output units.
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the context and hidden units. This observation suggests that the networks
developed stronger representations of the temporal context in these latter
conditions than in the incidental condition.

The differences in training regimen also influenced generation perfor-
mance. Figure 11 shows a comparison between human (left panel) and sim-
ulated generation results4 (right panel). The simulation results match qualita-
tively human performance: Inclusion scores tend to increase with the amount
of pre-training and are systematically above exclusion scores. Exclusion per-
formance differs more between the network and the participants. We
observed that participants generated fewer training triplets in the FK than in
the LK condition, whereas this is obviously not the case for the SRN. Over
all conditions, the model produced a relatively constant and lower number of
training triplets than participants in exclusion. Over the entire data set, how-
ever, the model accounts for about 95% of the variance in generation data
(R2 = .96).

Even though these simulations are far from perfect, they suggest that a sin-
gle process model of sequence learning such as the SRN can account for
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Figure 11. Human and simulated generation scores for the incidental, LK,
and FK conditions. All data have been separately transformed into z-scores
based on the data obtained for each source over the four conditions.
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inclusion and exclusion performance, and for the main aspects of reaction
time performance in our experiments. The pre-training procedure we used to
simulate the increasing amounts of explicit knowledge hold by the partici-
pants made it possible for the model to improve its performance in the SRT
task and to produce more correct transitions in the inclusion task. The model
was also able not to reproduce the training sequence in exclusion. On this lat-
ter point, it behaves in the same way as participants, although its performance
seems to be better overall. Network performance is attributable to the devel-
opment of stronger sequential representations. 

Other mechanisms, however, are probably able to account for our results.
(Cleeremans, 1993a) showed, for instance, how a dual architecture involving
a SRN and an encoder that learned single associations between two succes-
sive stimuli could account for the difference between incidental and explicit-
ly oriented learning in the Curran and Keele’s study (1993). In this previous
work, pre-training was simulated through processing within the encoder
exclusively, while both the SRN and the encoder influenced processing dur-
ing the SRT task. This procedure has the advantage of distinguishing two dif-
ferent processes for the pre-training and for learning during the SRT task—
which is probably also the case for participants. Although our pre-training
procedure shows in this respect a simplification, our simulation work never-
theless indicates that a single process can account for the direct and indirect
measures of sequence learning that we observed experimentally. Other
approaches involving separable processing systems to account for implicit
and explicit learning processes have also been shown to be able to simulate
learning differences between incidental and explicit instructions (Sun, 2001).
The simulations presented in this paper suggest in contrast that a single
process account is sufficient to understand the data (see also Kinder &
Shanks, 2003 for a similar claim).

General discussion

Using the process dissociation procedure, we did not find in any of the
four training conditions considered in this study a reliable automatic influ-
ence in a generation task—a result that would have suggested unconscious
knowledge acquisition. On the contrary, participants were systematically
able to reproduce, at least partly, the training sequence in the inclusion task
and to avoid reproducing these sequential transitions under exclusion instruc-
tions, therefore suggesting that learning was in fact essentially explicit. This
result has been observed when participants were initially informed about the
repeating sequence but also when this was not the case, suggesting that
sequence learning was mostly explicit even under incidental instructions.
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These results are consistent with previous reports claiming that sequence
learning is in fact based on the acquisition of conscious knowledge
(Perruchet & Amorim, 1992; Shanks & Johnstone, 1998, 1999). In the fol-
lowing discussion, we would like to reflect on the implications of our exper-
imental 0and simulation results concerning the relationship and the neural
modularity of implicit and explicit learning modes.

According to Willingham and Goedert-Eschmann, implicit and explicit
learning do occur in parallel. The discrepancy between their position and our
results is most likely rooted in the methodology we used to measure implic-
it learning. In the Willingham and Goedert-Eschmann’s study, the transfer
effect was used to measure implicit learning while a free recall task was used
to measure explicit learning. Intentional participants achieved better perfor-
mance in the recall test but obtained the same transfer effect than incidental
participants. The authors therefore concluded that intentional instructions
increased explicit learning but leaved implicit learning unaffected. According
to the authors, the transfer effect constitutes a pure-measure of implicit learn-
ing because subjects were unaware of the fact that the sequence was present
at transfer. In this methodological framework, tasks and processes are thus
closely associated. Several reports indicate, however, that no task can be con-
sidered as process-pure (Jacoby, 1991; Reingold & Merikle, 1988), that is,
that no task exclusively involves a single cognitive process. In other words,
performance in any situation will always depend on the operation of differ-
ent processes working at the same time. More specifically, performance in
implicit tasks may be “contaminated” by explicit influences and vice-versa.
With this “contamination” problem in mind, one can argue that the similar
transfer effect observed by Willingham and Goedert-Eschmann in their inci-
dental and intentional conditions was possibly related to implicit learning in
the former but to explicit learning in the latter condition.

Using the PDP, we indeed previously reported that similar transfer effects
could be essentially attributable to conscious or unconscious knowledge
acquisition in two conditions differing only by the pace of the SRT task
(Destrebecqz & Cleeremans, 2001). We observed that when a high respond-
ing rate was imposed in the SRT task, subjects’ exclusion scores were above
chance level in the free generation task—suggesting that learning was at least
partly based on unconscious knowledge acquisition (but seeWilkinson &
Shanks, 2004 for a different result). Goschke (1997; 1998) reported the same
pattern of results when the SRT task was performed concurrently with a tone-
counting secondary task.

The absence of unconscious influence in any of the four training condi-
tions considered in our experiments does not mean, therefore, that sequence
learning may not occur implicitly but only in specific conditions in which
participants are prevented to develop stronger sequential representations.
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One can also argue that implicit learning took place in our study, in paral-
lel with explicit learning, but that unconscious influence in the generation
task was systematically overridden by controlled responding initiated by
explicit knowledge about the sequence. In other words, participants were
always able to recall explicitly the training sequence and to produce some
other response in the exclusion task. This class of interpretation has previ-
ously been proposed by Willigham (1998), according to which both con-
scious and unconscious sequence knowledge co-exist in distinct brain sys-
tems, but the conscious system will systematically tend to usurp the control
of behaviour.

Our results are insufficient to decide between single- and multiple-sys-
tems views of implicit and explicit learning. However, the simulations pre-
sented in this paper suggest that the dissociations between different levels of
explicit knowledge can be accounted for within a single processing system.
Previous simulation work also indicates that a connectionist model endowed
with a single learning process can simulate dissociations between implicit
and explicit learning (Destrebecqz & Cleeremans, 2003). Other models sup-
port, however, that implicit and explicit learning depend on separate pro-
cessing modules (Wallach & Lebiere, 2003, Sun, Merrill & Peterson, 2001).
The results of brain imaging studies have also led to the conclusion that dif-
ferent brain networks subtend implicit and explicit sequence learning
processes (Grafton, Hazeltine & Ivry, 1995; Rauch et al., 1995). In these
studies, however, implicit and explicit processes were exclusively associated
with different training phases—a procedure that does not ensure that implic-
it and explicit components were effectively dissociated during the two train-
ing conditions. In a PET scan experiment, (Peigneux et al., 2000) reported
the systematic activation of the striatum when participants were presented
with a complex probabilistic sequence (see also Rauch et al., 1997).
Sequence learning in experiments using this material is typically essentially
implicit (e.g., Jiménez, Méndez & Cleeremans, 1996). According to
Peigneux et al., the striatum is involved in implicit sequence learning through
its participation in the cortical-subcortical motor loop between prefrontal and
caudates areas. They further suggested that the striatum is particularly active
for the selection of the most appropriate response given the identity of the
current target and the context of previous stimuli.

It remains possible, however, that some brain areas are specifically
involved in the conscious treatment of sequential material (Clegg,
DiGirolamo, & Keele, 1998). In a recent PET study adapting the process dis-
sociation procedure, we reported that anterior cingulate cortex and medial
frontal cortex (ACC/MCPF) were specifically involved in conscious control
of sequence knowledge in a generation task performed under inclusion and
exclusion instructions (Destrebecqz et al., 2003). These results are in line
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with previous reports indicating the function of this region in cognitive con-
trol (e.g. MacDonald, Cohen, Stenger, & Carter, 2001), and suggest that the
role of the ACC/MCPF consists in exerting conscious control over the activ-
ity of the striatum that subtends the core mechanism of sequence learning as
proposed by Peigneux et al. (2000). The relationship between implicit and
explicit learning might therefore not be viewed as reflecting the involvement
of independent or mutually exclusive systems but rather the functional inter-
action between different brain regions subserving different cognitive
processes.
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Appendix: SRN parameters

In each condition, eight different networks were each initialized with random weights
comprised between –0.5 and 0.5. To simulate the LK and FK conditions, we pre-
trained each network by exposing it respectively to 10 and to 100 presentations of the
twelve-element sequence prior to the SRT task itself. To introduce variability in the
network’s performance, normally distributed random noise (σ = 1) was added to the
net input of each receiving unit. Learning parameters were identical in the four con-
ditions and were as follows: slow learning rate = 0.1, momentum = 0.9, fast learning
rate = 0.45, fast weight decay = 0.5 (see Cleeremans & McClelland, 1991).
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