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NUMBER COMPARISON AND NUMBER LINE
ESTIMATION RELY ON DIFFERENT MECHANISMS

Delphine Sasanguie* & Bert Reynvoet

The performance in comparison and number line estimation is assumed to rely
on the same underlying representation, similar to a compressed mental number
line that becomes more linear with age. We tested this assumption explicitly by
examining the relation between the linear/logarithmic fit in a non-symbolic
number line estimation task and the size effect (SE) in a non-symbolic compar-
ison task in first-, second-, and third graders. In two experiments, a correlation
between the estimation pattern in number line estimation and the SE in com-
parison was absent. An ANOVA showed no difference between the groups of
children with a linear or a logarithmic representation considering their SE in
comparison. This suggests that different mechanisms underlie both basic
number processing tasks.

Introduction

The way that children and adults process number has attracted a lot of
research interest in the past few years. Different paradigms have been used to
investigate number processing in children, including number comparison
(e.g., Holloway & Ansari, 2009) and number line estimation (e.g., Booth &
Siegler, 2006). In a number comparison task, children have to indicate the
larger/smaller of two presented numbers. Typically, a distance effect (DE) is
observed in comparison (Moyer & Landauer, 1967): children are slower and
less accurate in differentiating two numbers that are numerically close (e.g.,
8 vs. 9) than two numbers that are numerically more distant (e.g., 1 vs. 9).
This DE is accompanied by a size effect (SE): when the numerical distance is
kept constant but the size of the numbers increases (e.g. 2 and 4 versus 8§ and
10), error rates and response times increase with age and experience, the size
of these effects decreases (e.g., Holloway & Ansari, 2009; Laski & Siegler,
2007). In a number line estimation task, two variants are possible: in a
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number-to-position (NP) task, children have to place a number on an empty
number line and in a position-to-number (PN) task, they are shown a position
on a number line and asked to estimate the number that corresponds to it.
Children’s estimates have been observed to increase logarithmically with
numerical magnitude on the NP task and exponentially with numerical mag-
nitude on the PN task (Siegler & Opfer, 2003). Most studies however, use the
number-to-position variant to investigate the underlying representation
(Booth & Siegler, 2006; Sasanguie, Gobel, Moll, Smets, & Reynvoet, 2013).
In this task, young children initially generate estimates that closely fit a log-
arithmic function (i.e. small numbers are put further away from one another
on this empty line than larger numbers). With increasing age, children learn
to use the number line linearly, although the age at which this criterion is
reached depends on the scale of the number line (e.g., Bertelletti, Lucangeli,
Piazza, Dehaene, & Zorzi, 2010).

The DE and the SE in comparison and the logarithmic mapping in number
line estimation are explained by assuming a common underlying magnitude
representation, i.e. a left-to-right oriented “mental number line” (Dehaene,
1997; Gallistel & Gelman, 1992). On this mental number line, magnitudes are
represented as a Gaussian distribution around the true location of each spe-
cific number, with partially overlapping representations for nearby numbers.
This implies that, whenever a number is presented, not only the representation
of that specific number will be activated, but also partially the representation
of the nearby numbers. Moreover, the overlap between nearby numbers
increases with increasing number size, resulting in a logarithmic compressed
number line. Such a representational organisation leads to more difficult dis-
crimination of nearby numbers (i.e. DE), increased reaction times for larger
numbers (i.e. SE), and a logarithmic mapping in the number line estimation
task in young children. It is suggested that with increasing age, the logarith-
mic compression gradually disappears and the mental number line becomes
linear and more precise. This developmental change results in smaller DEs
and SEs (e.g., Holloway & Ansari, 2009; Laski & Siegler, 2007; Sasanguie,
De Smedt, Defever, & Reynvoet, 2012) and a better linear fit on the number
line estimation task (e.g., Booth & Siegler, 2006; Siegler & Booth, 2004).

To test the hypothesis of a common mechanism responsible for the find-
ings in comparison and number line estimation, Laski and Siegler (2007)
examined the performance on both tasks in a sample of children. They
observed decreasing DEs and SEs in comparison and more reliance on a lin-
ear fit in number line estimation with increasing age. Moreover, a correlation
was found between the accuracy in the comparison task and the individual
variance of estimations in the number line estimation task, supporting the idea
of a common underlying representation in both tasks. However, we believe
that this conclusion is premature. First, older children and adults typically use
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linear mappings in the number line task. If number is represented linearly, no
SE in comparison should be present; small numbers and large numbers are
equally discriminable. Contrary to this expectation, a SE is still observed in
comparison tasks (Laski & Siegler, 2007; Schwarz & Stein, 1998). This
inconsistency between both tasks is difficult to explain on the basis of a com-
mon mechanism. Second, in the study by Laski and Siegler (2007), the asso-
ciation between the comparison and the number line estimation task is inves-
tigated by computing the correlation between the comparison accuracy and
the child’s estimates. However, overall accuracy performance in comparison
is not a direct manifestation of the underlying logarithmic compression of the
mental number line; the DE and the SE are. Moreover, although the perform-
ance in number comparison and number line estimation are thought to reflect
characteristics of the same underlying mental number line, recent work also
pointed towards a different origin of these effects (e.g., connectionist models
about comparison; Verguts, Fias, & Stevens, 2005; and non-numerical proc-
esses such as proportion judgments — Barth & Paladino, 2011, attention
resources — Anobile, Cicchini, & Burr, 2012 or strategy use — Petitto, 1990;
White & Sziics, 2012 in case of number line estimation performance).
Finally, Laski and Siegler (2007) presented symbolic numbers between 0-
100. As already indicated by the authors themselves, the performance in a
comparison task with these numbers is influenced by unit-decade compatibil-
ity effects typically observed in comparison (e.g., Nuerk, Weger, & Willmes,
2001), whereas such compatibility effects do not affect the performance in
number line estimation. The presence of this compatibility effect in compar-
ison can be avoided by using non-symbolic stimuli (Moeller, Klein, Nuerk, &
Cohen-Kadosh, 2012).

In the present study, we therefore re-examined the correlations between
the indices of mental number line compression in a number comparison task
and a number line estimation task, both with non-symbolic stimuli (i.e. dot
patterns). More precisely, we investigated whether the individual variance in
the SE (i.e. the difference between reaction times on large versus small trial
pairs —a more direct manifestation of the underlying logarithmic compression
of the mental number line than overall accuracy —) on the one hand, and the
logarithmic and the linear fit on a number-to-position variant of the number
line estimation task on the other hand, were related in children. If perform-
ance in comparison and number line estimation is driven by the same under-
lying representation, a positive correlation between the logarithmic fit in
number line estimation and the reaction time difference on large and small
trial pairs is expected: more logarithmic compression should result in higher
reaction times for larger pairs. Moreover, a negative correlation between the
linear fit in number line estimation and the difference between large and
small trial pairs is predicted: the more linear children their estimation pattern
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is, the smaller the reaction time difference between the large and small
number pairs is expected to be. We also explicitly tested whether there is a
difference between children relying on a logarithmic versus a linear estima-
tion pattern in a number line estimation task and their performance on the
comparison task. According to Laski and Siegler’s (2007) claim, it is
expected that children relying on a logarithmic representation will show a
larger DE or SE in the comparison taskl!], while this difference is expected to
be absent in case of the children with a linear estimation pattern (see

Figure 1).
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Figure 1

Visual representation of the hypotheses of Experiment 1, based on Laski and Siegler's
(2007) claim. On top, a linear representation is presented. Below, a logarithmic

representation is visualised

1. However, to test our hypothesis for the DE, three difference scores are needed (i.e. a differ-
ence score between the large and the small distances within the small trial pairs, a differ-
ence score between the large and the small distances within the large trial pairs and a
difference score between these two first difference scores) and we believe that this measure,
based on three difference scores, contains a lot of noise and might be unreliable (Siegrist,
1995; Strauss, Allen, Jorgensen, & Cramer, 2005). In a difference score, the measurement
errors of both compounds are combined, reducing the possibility to evoke a significant cor-
relation (Strauss et al., 2005). Therefore, we chose to only use the SE (which is only one
difference score between large and small trial pairs) as a reflection of the underlying loga-

rithmic compression of the mental number line.
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Experiment 1

Method

Participants

Ninety-two participants were recruited from an elementary school in Flan-
ders, Belgium, in a middle to higher income neighbourhood. Subjects that
were outliers (>3SD below or above the group average) in one of the experi-
mental tasks were removed (N = 5). The final sample consisted of 87 typically
developing children, comprising 28 first graders (16 males, M,,. = 6.6 years,
SD = .33), 29 second graders (10 males, M, = 7.7 years, SD = .29) and 30
third graders (13 males, M,o, = 8.6 years, SD = .25).

Materials and Procedure

Children were tested in small groups of 7 to 10 children in a quiet room
accompanied by two experimenters. All children first completed the number
line estimation task, followed by the number comparison task. To prevent
fatigue, a short break between the two tasks was provided.

Number line estimation task. This task was administered with pen and paper.
Children were presented with 25 cm long lines in the centre of white A4 (210
x 297 mm) sheets. Dot patterns were generated with a MatLab script
(Dehaene, Izard, & Piazza, 2005) that controlled for total area in order to pre-
vent consistent use of this feature (larger numerosities contained smaller
dots). Beginning and end points were labelled by a figure of 0 dots on the left
and 100 dots on the right respectively. The to-be-positioned dot pattern was
shown in the centre of the sheet, 6 cm above the number line. The dot patterns
shown were 2, 3, 4, 6, 18, 25, 48, 67, 71, 86 (corresponding to sets A and B
for the same interval used in Siegler and Opfer, 2003). A different random
order of presentation for the dot patterns was generated for each child and
each line was presented on a separate sheet. Children were instructed to mark
on the line where they thought the quantity had to be positioned. To ensure
that the child was aware of the interval size, an example was provided by the
experimenters solving the first item of the task while saying: “This line goes
from 0 dots to 100 dots. If here is 0 and here is 100, where would you position
this number of dots?”. After that, the children were able to go through all
sheets at their own pace.

Number comparison task. This task was presented on laptops with 14-inch
screens. Stimulus presentation and the recording of behavioural data were
controlled by E-prime 1.1 (Psychology Software Tools, http://www.pst-
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net.com). Participants had to select the larger of two dot patterns that were
presented on the left and on the right side of the screen, by pressing a key at
the side of the largest quantity (‘a’ and ‘p’ on an AZERTY keyboard). Stimuli
were two white-filled circles (radius 3.5 cm) each containing a dot pattern,
simultaneously presented on a black background. Children were asked to
respond as quickly as possible without making errors. Five practice trials
were included, to make the children familiar with the task requirements. Stim-
uli involved dot patterns ranging from1 through 9, but only combinations of
stimuli with a maximum distance of 5 were presented to the children, which
resulted in 60 trials. A trial started with a fixation cross for 600 ms, after
which the two stimuli that had to be compared appeared. Stimuli remained on
the screen until the child responded. The inter-trial interval was 1000 ms.

Results

Number line estimation task

The percentage absolute error (PAE) was calculated per child as a measure of
children’s estimation accuracy. This was done by using the following formula
by Siegler and Booth (2004):

Estimate — Estimate Quantity
Scale of Estimates

For example, if a child was asked to estimate 18 on a 0-100 number line and
placed the mark at the point on the line corresponding to 30, the PAE would
be (30-18) / 100 or 12%. Table 1 shows the mean PAE per grade. Accuracy
on the number line task increased with grade, £(2,84) = 4.43, p = .02, n,° =
.10.

We further analysed children’s estimation patterns by fitting linear and
logarithmic functions for each individual child (see also Siegler & Opfer,
2003). Then, a paired -test was conducted on the mean R? linear and mean R?
logarithmic for each grade, in order to investigate whether there was a differ-
ence. The model with the highest R? was logarithmic for the first graders
(R?5 = .87), but did not differ from the model with the linear fit (R%;, = .86;
t(27) = -.46, p = .65). For the second graders, the fit of the linear model was
the best (R?;, = .89) and also did not differ from the logarithmic fit (R, =
.88; 1(28) = .74, p = .47). For the third graders, the linear model clearly fit the
best (R?;, = .97), but also did not differ significantly from the logarithmic
model (R, = .86; #(29) = 1.89, p =.07).
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Table 1
Mean percent absolute error (PAE) and the corresponding standard deviations of the
number lines, per grade

Number line estimation task

First graders (N=28) 15 (.07)
Second graders (N=29) .13 (.05)
Third graders (N=30) .11 (.05)

Number comparison task

We computed adjusted reaction times (RT) to reflect both speed and accuracy
(ACC) of performance in one measure by combining the median reaction
times and mean error rates using the formula RT/(1-error rate) or RT/ACC.
This way, the reaction times remain unchanged with 100% accuracy and
increase in proportion with the number of errors (see Iuculano, Tang, Hall, &
Butterworth, 2008 for a similar method[z]). The adjusted RTs are shown per
distance and per grade in Table 2.

The adjusted RTs were submitted to a repeated measures analysis of var-
iance (ANOVA) with distance as within-subject variable (5 levels) and grade
as between-subjects factor (3 levels). There was a main effect of distance,
F(4,81)=123.83, p <.0001, np? = .86, showing faster latencies with increas-
ing distance. There was also a main effect of grade, F(2,84) = 13.27, p <
.0001, #p? = .24, indicating that the reaction times decreased with increasing
grade. Furthermore, there was a distance by grade interaction, F(4,82) =2.34,
p = .02, yp? = .10: differences between grades were more pronounced at the
smallest distances, but the distance effects remained significant in each of the
grades separately, F(4,24) = 36.13, p < .001, 5#p? = .86 for the first grade;
F(4,25)=28.84, p < .001, #p? = .82 for the second grade and F(4,26) = 81.69,
p <.001, yp?= .93 for the third grade.

To quantify individual differences in the SE, we calculated the SE by sub-
tracting the adjusted RT on small pairs (both numbers less or equal than 4)
from the adjusted RT on large pairs (both numbers more or equal to 6). The
RT difference was then divided by the overall adjusted RT. This mean calcu-
lated SE (.32; SD = .23) was significantly different from zero, #86) = 13.10,
p <.001. No grade differences on the SE were present, F(2,84) =2.05p=.14,
np? = .05: the mean SEs were .31 (SD = .22), .27 (SD = .24) and .39 (SD =
.21) for the first-, second- and third graders respectively.

2. Bruyer and Brysbaert (2011) suggested that it is not a good idea to limit the analyses to
adjusted RTs without further checking the data. Therefore, we reanalysed the data of both
Experiment 1 and Experiment 2 using unadjusted RTs instead of adjusted ones. We
observed that none of the results changed.
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Table 2
Adjusted reaction times (ms) and corresponding (standard deviations) for the five
distances of the number comparison task, per grade

Number Comparison task

d1 a2 a3 d4 d5
First graders 1535.84 1232.48 1155.47 1019.44 976.39
(N=28) (368,53)  (260.03)  (274.66)  (201.17)  (204.01)
Second graders 1274.07 1025.20 921.99 902.48 863.85
(N=29) (256.94)  (221.40)  (150.83)  (221.94)  (185.48)
Third graders 1227.90 987.82 874.59 817.60 797.64
(N=30) (185.72)  (169.37)  (155.03)  (131.73)  (145.21)

Relation between both number processing tasks

Correlation analysis. A correlation analysis was conducted to explore the rela-
tion between the performance on both tasks. For the number line estimation
task, the individual logarithmic (R ) and the linear fit (R%;,) were used as
indices. For comparison, the calculated SE was used. Confidence intervals
(ClIs) of the obtained correlation were calculated according to the formula sug-
gested by Quertemont (2011, p. 126). This immediately gives readers informa-
tion about the highest and lowest correlations at the population level. If the
entire confidence interval falls below a sensible threshold value, it will be pos-
sible to conclude that the correlation at the population level is negligible. The
correlation between the logarithmic function and the performance on the com-
parison task was not significant: 7(85) =-.07, p=.50; 95% CI =[-.28; .14]. Sim-
ilarly, the correlation between the linear fit and the performance on the compar-
ison task was not significant: #(85) =-.09, p = .43; 95% CI: [-.30; 12181,

Independent samples t-test. Children were classified as linear or logarithmic
depending on the best fitting model (i.e. the highest significant R?, see Siegler
& Opfer, 2003). Moreover, if both models failed to reach significance, chil-
dren were classified as having ‘no representation’ (see Berteletti et al., 2010

3. When these correlations were examined per grade, the pattern of the results did not change.
Because the small sample sizes per grade imply that the results of the correlation analysis
might be more sensitive to outliers, Cook’s values were calculated. To interpret Cook’s dis-
tance, the sensitive cutoff value of 4/n recommended by Bollen and Jackman (1990) was
used. Based on this criterion, one participant was removed from the first grade, three partic-
ipants from the second grade and two participants from the third grade. None of the correla-
tions per grade reached significance: the correlations between the logarithmic function and
the SE in comparison were 7(25) = -.22, p = .27 for the first grade, 7(24) =-.28, p = .16 for
the second grade and #(26) = -.05, p = .82 for the third grade respectively. With regards to
the linear fit ant the SE, correlations were 7(25) = .03, p = .90 for the first grade, r(24) = .04,
p = .74 for the second grade and 7(26) = -.29, p = .13 for the third grade respectively.
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for a similar method). In case of the first graders, 13 children were classified
as having a linear representation, 14 as having a logarithmic one and 1 child
as having no representation. From the second graders, 17 children had a linear
and 12 had a logarithmic representation and from the third graders, 20 chil-
dren had a linear and 10 a logarithmic representation. An independent sam-
ples #-test was conducted to examine the differences in the performance on
the comparison task between the group of children who were classified as
having a linear representation and the group of children who were classified
as having a logarithmic representation. No significant difference could be
detected between both groups, < 1. The mean SEs were .32 (SD = .23) for the
children with a linear representation (N = 50) and .33 (SD = .24) for the chil-
dren with a logarithmic representation (N = 36).

Discussion

The results of Experiment 1 do not confirm the hypotheses we described in
the introduction of this study. No correlation was observed between the log-
arithmic or the linear fit in number line estimation and the reaction times on
small and large trial pairs (i.e. the SE) in number comparison. Moreover, no
difference in the SE observed in the comparison task could be detected
between children who relied on a logarithmic representation and children
who relied on a linear representation. This suggests that the effects obtained
with these two different tasks do not stem from a common underlying mech-
anism.

It should be noted that the different number ranges used in the number
comparison and the number line estimation tasks may have led to the absence
of a correlation between the two tasks. In the comparison task, small numbers
(1-9 dots) were used, whereas in the number line estimation task, stimuli
between 0 and 100 dots were presented. However, it should be pointed out
that the use of different number ranges makes our results even more convinc-
ing. In the present study we observed that most of the children already per-
formed linearly on the 0-100 number line task. Previous studies (e.g.,
Berteletti et al., 2010) have shown that linear mappings occur even earlier
with smaller number lines (e.g., 1-10). On the basis of these previous find-
ings, no SE in comparison is expected when only numbers up to 9 are shown.
This expectation is however not met: a SE is present. Although we believe
that the different number ranges are even more convincing to argue in favour
of different mechanisms in both tasks, we conducted an additional experiment
in which large numerosities were shown in the number comparison task to
test the dependency of both tasks directly.

In a typical comparison task with large non-symbolic stimuli, stimulus
pairs are created on the basis of relative distance (i.e. ratios) instead of abso-
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lute distance (e.g., Inglis, Attridge, Batchelor & Gilmore, 2011; Libertus, Fei-
genson & Halberda, 2011) to compensate for logarithmic compression (and
the SE that is said to be a result of this compression). In line with these stud-
ies, we also opted for a design where stimulus pairs were created on the basis
of ratios. Such a manipulation, however, also changes the predictions if one
assumes a common underlying mechanism in both tasks (see figure 1). In
contrast to Experiment 1, a positive correlation between the linear fit in
number line estimation and the reaction time difference between large and
small trial pairs is expected: if children rely on a linear representation, larger
number pairs are further away from one another than smaller number pairs,
leading to faster latencies for larger pairs. Moreover, a negative correlation
between the logarithmic fit in number line estimation and the reaction time
difference between large and small trial pairs is predicted: if children have
perfect logarithmic mappings, no RT difference is expected between small
and large number pairs. Furthermore, when explicitly testing the difference
between children relying on a logarithmic versus a linear estimation pattern
in a number line estimation task considering the performance on the compar-
ison task, it is predicted that children relying on a linear representation will
show a large difference between large and small trial pairs on the comparison
task — due to the faster latencies on the larger trial pairs —, while this differ-
ence will be absent in case of the children with a logarithmic estimation pat-
tern.

Experiment 2
Method

Participants

Experiment 2 included 28 Flemish second graders (19 males, M, = 8.1
years, SD = .37) recruited from an elementary school in a middle income
neighbourhood. This age group was chosen because in Experiment 1 about
half of the second graders performed logarithmically on the 0-100 number
line estimation task, while the other half performed linearly. Moreover, this
group was preferred above the group of first graders, because in this second
experiment, the level of the number comparison task was more difficult. Sub-
jects that were outliers (>3SD below or above the group average; N = 2) in
one of the experimental tasks were removed from the original subject group.

Materials and Procedure

Children were tested in groups of 10-15 in a quiet room, accompanied by two
experimenters. All children first completed the non-symbolic number com-
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parison task, followed by the non-symbolic number line estimation task. To
prevent fatigue, a short break between the two tasks was provided.

Number comparison task. The number comparison task was conducted using
laptops with 14-inch screens. Stimulus presentation and the recording of
behavioural data were controlled by E-prime 1.1 (Psychology Software
Tools, http://www.pstnet.com). Participants had to select the larger of two
presented dot patterns, one on the left and one on the right side of the screen,
by pressing a key at the side of the largest dot quantity (‘a’ and ‘p’ on an
AZERTY keyboard). Children were asked to respond as quickly as possible
without making errors. Five practice trials were included, to make the chil-
dren familiar with the task requirements. Stimuli were pairs of dot patterns
presented in white on a black background, generated by a Matlab script devel-
oped by Gebuis and Reynvoet (2011) that is perfectly suited to control for
continuous visual variables with large non-symbolic stimuli. In this program,
5 visual properties are manipulated: (1) the area subtended (i.e. the smallest
contour around the dot pattern), (2) the total surface of the dots, (3) the density
(i.e., the total surface divided by the area subtended), the (4) the average
diameter of the dots and (5) the total circumference (i.e. the total contour
length of all dots). Regression analyses confirmed that there was no relation-
ship between each visual cue and numerosity, all R?s <.03, all ps > .11. The
different visual cues of the stimuli co-varied positively with numerosity in
half of the trials and negatively with numerosity in the other half. One of the
stimuli always contained the reference number of 24 dots. The other dot pat-
tern contained either 12, 16, 19, 30, 36 or 48 dots, resulting in 3 different
numerical distances (ratios of 1.25, 1.5 and 2). Each of the pairs was repeated
ten times, resulting in 60 trials. A trial started with a fixation cross for 600 ms,
after which the two stimuli that had to be compared appeared. Stimuli were
presented simultaneously in the centre of the screen and remained on the
screen until the child responded. The inter-trial interval was 1000 ms.

Number line estimation task. The number line estimation task was adminis-
tered with pen and paper and was identical as in experiment 1.

Results

Number line estimation task

The model with the highest R? was linear for this group of second graders
(R*j, = .788), but did not differ from the model with the logarithmic fit (R4,
=.787; 1(27) = .03, p = .98).
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Number comparison task

A repeated measures analysis of variance (ANOVA) with distance (3 levels)
as the within-subject factor on children’s adjusted reaction times (i.e.
RT/ACC) was conducted. There was a main effect of distance, F(2,26) =
43.41, p <.0001, np?= .77, showing decreasing RTs with increasing numer-
ical distance. The adjusted RT for ratio 1.25 was 1900.98ms (SD =
681.44ms), for ratio 1.5 it was 1729.80ms (SD = 507.26ms) and for ratio 2,
the adjusted RT was 1288.40ms (SD = 349.86ms).

As an index for the large number comparison task, a calculated difference
measure similar to that of Experiment 1 was used. The difference measure in
this case was calculated by subtracting the adjusted RT on the pairs smaller
than 24 (i.e. 12-24, 24-12, 16-24, 24-16, 19-24 and 24-19) from the adjusted
RT on the pairs larger than 24 (i.e. 24-30, 30-24, 24-36, 36-24, 24-48 and 48-
24). The difference RT was then divided by the overall adjusted RT. Unex-
pectedly, this mean calculated SE (-.13; SD = .14) was significantly different
from zero, #(27) =-4.77, p < .001, indicating that the participants responded
faster to the trial pairs larger than 24.

Relation between both number processing tasks

Correlation analysis. A correlation analysis was conducted to explore the
relation between the performance on both tasks. For the number line estima-
tion task, the individual logarithmic (R?},,) and the linear fit (R?;;,) were used
as indices. For comparison, the calculated SE was used. Similar as in Exper-
iment 1, confidence intervals were calculated according to the formula pro-
vided by Quertemont (2011). There was no significant correlation between
the logarithmic function and the performance on the comparison task, 7(26) =
-.20, p = .31, 95% CI = [-.60; .19]. Neither was the correlation between the
linear fit and the performance on the comparison task significant, 7(26) =-.21,
p=.27,95% CI=[-.61; .18].

Independent samples t-test. Regression analyses on the individual data of the
children (similar method as in Experiment 1, see also Berteletti et al., 2010)
showed that 14 children were classified as having a linear representation, 10
as having a logarithmic one and four children as having no representation. An
independent samples ¢-test was conducted to examine the differences in the
performance on the comparison task between the group of children who were
classified as having a linear representation and the group of children who
were classified as having a logarithmic representation. No significant differ-
ence could be detected between both groups, #22) =-1.37, p=.18. The mean
difference scores were -.17 (SD = .14) and -. 09 (SD = .12) for the children
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with a linear representation and the children with a logarithmic representation
respectively.

General Discussion

Number comparison and number line estimation are common tasks to inves-
tigate the development of number processing in children. Performance on the
comparison task results in a size effect (e.g., Holloway & Ansari, 2009;
Schwarz & Stein, 1998): when numerical distance is kept fixed, discrimina-
tion performance is more difficult when the numerical size increases. The
performance of young children on a number line estimation task is character-
ised by a logarithmic mapping (e.g., Siegler & Opfer, 2003): small numbers
are put further away from one another on this empty line than larger numbers.
The performance in both tasks is assumed to rely on the same underlying rep-
resentation taking the form of a compressed mental number line (Laski & Sie-
gler, 2007). An explicit test for this assumption is to examine the relation
between the performance in both tasks. A more linear representation as meas-
ured in the number line task, should result in smaller SEs. We investigated
this in first-, second-, and third graders with a non-symbolic number compar-
ison and number line estimation task.

In both experiments of the present study, a relation between the SE in the
comparison task and the performance on a number line estimation task was
absent. The absence of a relation between the SE in the comparison task and
the performance on a number line estimation task is not in line with the
assumption of a common underlying principle in both tasks (Laski & Siegler,
2007) and suggests that different mechanisms may play a role in both tasks.
Previous studies have indeed argued in favour of task-specific mechanisms to
account for the performance in the number line estimation task and number
comparison. For instance, Barth and Paladino (2011) demonstrated that chil-
dren rely on the beginning and ending marks of the number line to estimate
the correct position on a number line. This way, children estimate the part
(e.g. 30) of a whole (e.g. 100), or in other words, a proportion. According to
these authors, the requirement of a proportion judgment in this task provides
a better explanation than does the idea of a logarithmic-to-linear representa-
tional shift. In another study, Anobile, Cicchini and Burr (2012) showed that
when adults are distracted by a concurrent task, they perform logarithmically
on a non-symbolic number line estimation task. This finding led the authors
to suggest that the non-linearity arises from an intrinsic logarithmic represen-
tation and that attentional resources play a very important role in making the
shift to linear representations. Both studies suggest that additional non-
numerical processes may moderate the performance in the number line task
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and suggest that number line mapping is not a pure reflection of the underly-
ing representation.

Based on the present results, also the true nature of the SE in comparison
can be questioned based. The SE is assumed to reflect the compressive nature
of the number line. This compression can be controlled for by presenting
small and large trial pairs with the same ratio (instead of same absolute value)
and should result in the absence of a SE when performance on small and large
trial pairs is compared. However, the results of Experiment 2 showed that
despite the use of the same ratios in the small and large trial pairs, a SE was
still present, which is not in line with the idea of a logarithmic scaling of the
number line. This finding might be explained by either an even more com-
pressed number line, or alternatively, the SE might be originated by alterna-
tive mechanisms. For instance, on the basis of connectionist modelling, Ver-
guts and colleagues (Verguts et al., 2005; Van Opstal, Gevers, De Moor, &
Verguts, 2008) demonstrated that the SE can be explained by decisional proc-
esses in comparison. They showed that representational overlap is not a nec-
essary condition for this effect to emerge. The SE can alternatively be
explained by the compressive pattern of connections between the magnitude
representation and the response nodes (Verguts et al., 2005).

It should be noted that our conclusion that different mechanisms are
involved in both tasks, is based on the absence of an effect. One factor that
might have lead to the absence of a correlation, is the reliability of the tasks.
The majority of studies, certainly studies including the number line estima-
tion task, have used Arabic digits and not non-symbolic dot patterns. Moreo-
ver, this is also true for the Laski and Siegler’s study (2007) who argued in
favour of a common underlying mechanism in both task. So perhaps our non-
symbolic variant is less reliable, leading to null results. However, we have
strong arguments to believe that both tasks we used are highly reliable and
valid. First, Gilmore, Attridge and Inglis (2011) found significant split-half
reliability coefficients in non-symbolic comparison tasks, very similar to the
one used in this study (see also Maloney, Risko, Preston, Ansari, & Fugel-
sang, 2010; Sasanguie, Defever, Van den Bussche, & Reynvoet, 2011). Sec-
ond, the fact that the performance of children on the non-symbolic number
line task is significantly related to their performance on a symbolic number
line task (e.g., Sasanguie, De Smedt et al., 2012) and to their math achieve-
ment scores (e.g., Sasanguie, De Smedt et al., 2012; Sasanguie, Van den
Bussche et al., 2012), demonstrates both the reliability and the validity of the
non-symbolic number line task. Another factor that could be responsible for
the absence of a positive finding is a power problem (i.e. insufficient number
of participants to detect significant correlations). To verify this possibility, we
calculated the confidence intervals of the correlations and statistically showed
that also at the population level, it is very unlikely that there exists a relation
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between the performance on both tasks (see especially the small CIs in Exper-
iment 1). In Experiment 2, large CIs demonstrated that it is difficult to make
conclusions at the population level based on this small sample (i.e. ‘statistical
indeterminacy’; Quertemont, 2011), but the results point in the same direction
as those of Experiment 1. Moreover, to further counter the power issue in
Experiment 2, we also computed the correlations between the linear and log-
arithmic fit and the math achievement scores of the children (measured with
a standardised math test; Achievement test for mathematics from the Flemish
Student Monitoring System, Dudal, 2000). In line with Sasanguie, Van den
Bussche et al. (2012), we observed (marginal) significant correlations
between the performance on the number line estimation task and mathematics
achievement (for the linear, #(26) = .37, p = .058; for the logarithmic fit, #(26)
= .41, p=.035). This indicates that the sample size in Experiment 2 was large
enough to detect significant correlations.

It thus seems that different mechanisms underlie number comparison and
number line estimation. In contrast to what previously has been suggested
(e.g., Laski & Siegler, 2007; Schneider, Grabner, & Paetsch, 2009), when it
is explicitly tested whether the compression of the mental number line is
underlying both tasks, no relation is found between both tasks. It should be
noted, however, that we, in contrast to Laski and Siegler’s study, chose to use
non-symbolic instead of symbolic stimuli. Caution is thus recommended in
generalising the results, as other mechanisms may play a role in symbolic and
non-symbolic number processing (e.g., Santens, Roggeman, Fias, & Verguts,
2010). However, the main finding of the current study is that different mech-
anisms underlie two wide-spread cognitive number processing tasks: the
number comparison task and the number line estimation task. This finding is
consistent with recent studies (e.g., Anobile et al., 2012; Barth & Paladino,
2011; Ebersbach, Frick, Luwel, Onghena, & Verschaffel, 2008; Verguts et
al., 2005) which have argued in favour of alternative explanations to explain
the results in number line estimation and comparison. As a result, we and oth-
ers have argued in favour of alternative measures to investigate magnitude
representation, such as priming (e.g., Defever, Sasanguie, Gebuis, & Reyn-
voet, 2011) and same-different judgments (e.g., Cohen Kadosh, Muggleton,
Silvanto, & Walsh, 2010; Defever, Sasanguie, Vandewaetere, & Reynvoet,
2012; Van Opstal & Verguts, 2011). Although the fact that number compari-
son and number line estimation reflect the underlying magnitude representa-
tion may be highly questionable, it has been frequently observed that the per-
formance on these tasks is related to mathematics achievement (e.g., De
Smedt, Verschaffel, & Ghesquiére, 2009; Sasanguie, De Smedt et al., 2012;
Sasanguie, Van den Bussche et al., 2012; Sasanguie, Gobel et al., 2013).
According to us, this may be explained by the fact that not so much the char-
acteristics of the magnitude representation is important for mathematical
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skills, but rather decisions and/or task specific mechanisms that act on these
magnitude representations. The idea that the magnitude representation is not
related to math achievement is supported by a recent study by Defever and
colleagues (2012). In this study, a same-different paradigm was used (i.e. a
task in which subjects have to decide whether two magnitudes are numeri-
cally the same or different and which is considered as a more appropriate task
to investigate the mental representations of magnitudes — Van Opstal and
Verguts, 2011) and results showed no relationship between the DE and math
achievement. On the other hand, Holloway and Ansari (2008) demonstrated
that the DE in numerical and non-numerical comparisons is similar, support-
ing the idea of the DE in comparison reflecting a decisional mechanism. Also
neuroimaging studies showed that comparison of number and letter compar-
ison activate very similar parieto-frontal networks in humans, nourishing the
idea of common decision mechanisms (Fias, Lammertyn, Caessens, & Orban,
2007). A crucial test would be to investigate the relationship between non-
numerical decision processes and mathematics achievement and dyscalculia.
Evidently, general cognitive factors like intelligence, working memory and
cognitive control have to be taken into account in these studies, as these fac-
tors may influence decisional aspects and strategies.
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