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RT4WIN: A WINDOWS-BASED PROGRAM FOR
RANDOMIZATION TESTS

Ming Huo & Patrick Onghena*
KU Leuven

A randomization test (RndT) is a statistical significance test for which the
validity is based on the random assignment of experimental units in a designed
experiment. In a random sampling setting, it can also be applied in a very gen-
eral way because its validity does not rely on distributional assumptions,
homogeneity of variances, or independence of errors. However, the use of
RndTs did not receive much attention in applied research because RndTs rely
on computationally intensive algorithms and most popular and common statis-
tical software packages do not provide facilities to easily perform randomiza-
tion tests. In order to fill this gap, we present a software package, RT4Win.
Unlike most stand-alone software and programs for RndTs, RT4Win is a fast
Windows-based program with a user-friendly interface. It provides a facility to
carry out RndTs in a series of experimental designs, for both systematic and
Monte Carlo data partition methods. The program is free of charge and availa-
ble upon request from the authors.

In most experiments in psychology, as in other scientific disciplines, random
assignment rather than random sampling is the norm, which makes the use of
parametric statistical procedures, such as standard ¢ or F tests, problematic. A
review of 252 studies published in five high impact journals revealed that
experimental groups were constructed by random assignment in 96% of cases
and by random sampling in only 4% (Ludbrook & Dudley, 1998). Ludbrook
and Dudley (1998) also disturbingly confirm that in 84% of the randomized
experiments common parametric ¢ or F tests were applied, while more appro-
priate randomization tests (RndTs) should be the first choice for the analysis
of experiments in the absence of random sampling (Edgington, 1966; Hunter
& May, 2003; Pitman, 1937a; Pitman, 1937b; Pitman, 1938). Recent results
suggest that the situation is only slowly improving (Anderson, 2001; Zieffler,
Harring, & Long, 2011).

We can only guess at the reasons for this negligence or preference, but it
is very plausible that critical events in the history of statistics and computer
science, editorial policy, the teaching of statistics, and the availability of soft-
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ware shaped the behaviour of our fellow scientists (Cobb, 2007; Noreen,
1989; Ramsey & Schafer, 2002; Stigler, 1992). In this article we will mainly
focus on the software issue and present a user-friendly and free program to
remove at least one obstacle to provide to RndTs the popularity they deserve.

RndTs are formally defined as statistical significance tests for which the
validity is based on the random assignment of experimental units in a
designed experiment (Edgington & Onghena, 2007). This means that their p
value can be derived in a valid way, just by taking into account the random
assignment procedure that was actually used in the experiment. It also means
that statistical tests that are not based on random assignment (e.g., in nonex-
perimental studies or nonrandomized experiments) are not called RndTs. The
way to derive the p value in a valid way, just by taking into account the ran-
dom assignment procedure that was actually used in the experiment, will be
explained with an example below.

While there is some divergence in the literature on the terminology
regarding RndTs and permutation tests, we follow the terminological distinc-
tion emphasised by Cox and Hinkley (1974), Kempthorne and Doerfler
(1969), and Zieffler et al. (2011). RndTs are tests based on random assign-
ment and do not have to involve data permutations in the combinatorial sense
of the term (see e.g., Onghena, 1992; Onghena & Edgington, 1994; Onghena
& Edgington, 2005) and permutation tests are distribution-free statistical tests
for which the validity can be based on other arguments (e.g., random sam-
pling from identical distributions) and for which the computation of the p
value involves repeated data permutations (Good, 2000; Manly, 1997; Mielke
& Berry, 2007). In many applications, however, the terminological distinc-
tion does not matter for the actual computations, and algorithms for RndTs
can be used to compute permutation test p values, and vice versa (Edgington
& Onghena, 2007).

Another important distinction is between randomization tests, parametric
tests, and the traditional nonparametric rank tests. Unlike the parametric tests,
which rely on random sampling from a population following a specified dis-
tribution or on a large sample approximation for samples of a broader class of
distributions, RndTs do not assume any specific error distribution or large
samples, and, unlike nonparametric rank tests, which transform the original
data into ranks, RndTs can be applied on the original data and therefore can
use all the information in the data (Edgington & Onghena, 2007; Lehmann &
D’ Abrera, 2006).

RndTs were proposed in the early twentieth century, but were not consid-
ered practical until much later with the emergence of cheap and fast comput-
ers. However, fast and user-friendly software is not commonly available to
the average researcher. It is this gap that we want to fill with the presentation
of RT4Win, a free Windows-based computer program for randomization
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tests. This paper begins with an introduction of the rationale of RndTs, clari-
fying their difference with classical statistical methods, followed by two
examples involving a one-way ANOVA design and one example involving a
repeated-measures design. Afterwards, we discuss the advantages and disad-
vantages of RndTs, other available RndTs software, and the assets of
RT4Win. Finally, we give some recommendations for future software devel-
opment.

The rationale of randomization tests

Randomization tests are applicable for experimental designs involving the
random assignment of available experimental units (e.g., human participants)
into treatment groups. This random assignment is the only stochastic process
that needs to be present for the valid application of RndTs. To help illustrate
the rationale of RndTs, a practical example is provided.

Example

Imagine that a new treatment for back pain is being compared to a standard
treatment by observing the recovery times (in days) of the patients on each
treatment. The researcher randomly assigned three patients to take the new
treatment and three others to take the standard treatment. After receiving the
treatments, the recovery times of the six patients have been measured, which
are shown in the first row of Table 1. Our question is whether the lower mean
recovery times for the new treatment group indicating the new treatment is
more effective or the difference of recovery times observed is just due to the
random assignment of the six patients into the two treatments?

In order to answer the above question, we can first set up a null hypothesis
which says that any difference of recovery times between the two treatments
is purely attributed to chance. If there is sufficient evidence against the null
hypothesis, then we should reject the null hypothesis in favour of the alterna-
tive hypothesis that the new treatment will lead to smaller recovery times. The
null and the alternative hypothesis can be expressed as

H,,: The new and standard treatment will lead to the same recovery times
(in days) for the given patients;

H, : The recovery times would decrease if the patients would take the new
treatment (for a one-tailed test).

To explore the difference between the two treatments, we need to choose
an appropriate test statistic. There are several options for comparing the two
treatments (e.g., the mean or median difference of recovery times between the
two groups, or a two-sample -statistic). In this case, we choose the mean dif-
ference of recovery times between the two groups, D, as the test statistic of
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Table 1
All possible data partitions of six recovery times (days) to two treatment groups of
sizes n=3 in each group

Data Partitions of Recovery Times (days)

No. New Treatment Standard Treatment Difference in means (D)
1* 3 14 15 16 21 58 221

2 3 14 16 15 21 58 -20.33333
3 3 14 21 15 16 58 -17

4 3 14 58 15 16 21 7.666667
5 3 15 16 14 21 58 -19.66667
6 3 15 21 14 16 58 -16.33333
7 3 15 58 14 16 21 -8.333333
8 3 16 21 14 15 58 -15.66667
9 3 16 58 14 15 21 9

10 3 21 58 14 15 16 12.33333
11 14 15 16 3 21 58 -12.33333
12 14 15 21 3 16 58 -9

13 14 15 58 3 16 21 15.66667
14 14 16 21 3 15 58 8.333333
15 14 16 58 3 15 21 16.33333
16 14 21 58 3 15 16 19.66667
17 15 16 21 3 14 58 -7.666667
18 15 16 58 3 14 21 17

19 15 21 58 3 14 16 -20.33333
20 16 21 58 3 14 15 21

Note. Each row represents one of the 20 data partitions, with the data partition on the observed difference
marked with an asterisk (*)

interest. The effect of the new treatment can be manifested if the observed
mean difference is considered extreme, as compared to an appropriate refer-
ence distribution.

The difference in the mean recovery times for the observed data is
d = 10.66667 —31.66667 = —21 days, indicating a decrease in recovery
times in favour of the new treatment.

If the null hypothesis is true and the two treatments do not affect the
recovery times differentially, then the recovery times for each patient would
stay exactly the same if he/she would have been assigned to a different treat-
ment group. Thus, the patient who recovered in 15 days on the new treatment
is just as likely to recover in 15 days on the standard treatment because there
is no difference between the two treatments.

As a result, we consider the recovery times as fixed, and the assignment
of those recovery times to the two treatments as random. Therefore, the ran-
dom assignment of the available patients to the treatments gives us the prob-



M. HUO & P. ONGHENA 391

abilistic justification for considering reshuffled recovery times to derive the
reference distribution. Under the null hypothesis of no treatment effect, the
assignment of recovery times to the new and the standard treatments is arbi-
trary and the recovery times obtained under the two conditions are exchange-
able. Given exchangeability under the null hypothesis, the obtained recovery
times are equally likely to have arisen from any possible assignment. Hence,
the mean differences of recovery times associated with each of the possible
assignment are also equally likely. A probability distribution for the mean dif-
ference can be constructed by calculating the mean difference for each of the

possible data divisions. Table 1 lists all (3 = 20 possible combinations of the

six obtained recovery times into two groups of size 3, and the mean difference
for each combination. Since each combination is equally likely, the probabil-
ity of any of these combinations is .05.

The p value of the randomization test under the null hypothesis is the pro-
portion of the values of the test statistic D in the reference distribution as
small as, or smaller than the obtained test statistic d (for a two-tailed test this
is formulated as “as extreme as or more extreme than”). Thus,

i I(D;<d)
p=PD<dHy) == ——

()

where D; is the value of the test statistic for the ith data partition and /() is

the indicator function. In Table 1, the obtained mean difference is d = -21,
which is the most extreme negative mean difference among all the data parti-
tions, so the p valueis p = P(D<-21) = 2_16 = .05 (for a one-tailed test).

This p value should be interpreted cautiously like any p value resulting
from a statistical significance test. It is a measure of evidence against the null
hypothesis, with smaller values indicating more evidence against the null
hypothesis than larger values. It should not be interpreted as the probability
that the null hypothesis is true; it is the probability to observe the given data
or even more extreme data if the null hypothesis were true. If there was a pre-
set significance level a, like the commonly used 5% significance level, then
the p value can be compared with this level a. If the p value is smaller than or
equal to the significance level a, as for the data in Table 1, the null hypothesis
is said to be “rejected”. In the example, it means that the null hypothesis that
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the new and standard treatment lead to the same recovery times (in days) for
the given patients is rejected. There is statistical evidence that recovery times
would decrease if the patients would take the new treatment.

Comparison with a parametric t test

How does the randomization test compare with the parametric ¢ test? The the-
ory and procedure underlying the parametric # test is well known from most
introductory statistics texts (see e.g., Moore, McCabe, & Craig, 2010). Sup-
pose that we have a random sample of 7 patients taking the new treatment
and a random sample of 7, patients taking the standard treatment, with cor-
responding sample means and variances of X, and X,, and 5| and s,
respectively. We assume that the recovery times of patients taking the new
treatment follovg a Gaussian distribution at the population level with mean
and variance 6~ and that the recovery times of patients taking the standard
treatment follovif a Gaussian distribution at the population level with mean L,
and variance 6" . The null hypothesis is that u; = p, while the alternative
hypothesis is |, <, if one expects that the new treatment will be more
effective in reducing the recovery times. The test statistic is

with a pooled estimate of the common within-group standard deviation

2 2
(ny=1)sy+(ny—1)s,

p ny+n,—2

If the null hypothesis of no difference between the two population means is
true, ¢ will be a random value from Student’s ¢ distribution with 7, + n, -2
degrees of freedom (Fisher, 1925; Student, 1908).

For the observed data in Table 1, with n; = n, = 3, the means and var-
iaznces for the two samples are X, = 10.67, x, = 31.67, s] = 44.33, and
s, = 526.33 . The test statistic ¢ equals —1.5226 with 4 degrees of freedom.
The p value for the one-tailed test is .1013, which is more than twice the ran-
domization test p value, and would not result in a rejection of the null hypoth-
esis at any of the conventional significance levels. Furthermore, the validity
of this p value relies on the plausibility of the parametric assumptions:

1. random sampling of patients from certain populations

2. Gaussian distributions for the values of recovery times

3. equal population variances for the values of recovery times.
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Assumption 1 is obviously problematic since the patients were not a random
sample from a specified population. Assumptions 2 and 3 may be true, but are
difficult to check when sample sizes are small. In fact, assumption 3 is not
needed for the more generally applicable Welch version of the two-sample ¢
test (Welch, 1947). In this version of the ¢ test, the degrees of freedom are
adjusted, and for the data in Table 1 this results in 2.335 degrees of freedom,
and a p value of .1249, an even larger value than for the parametric ¢ test that
assumes equal population variances.

Comparison with a nonparametric rank test

Some researchers who are reluctant to make the Gaussian assumption, or
more in general are reluctant to apply a parametric ¢ test with such small sam-
ples, might consider a nonparametric rank test to analyse the back pain data
in Table 1. In this case, the Wilcoxon-Mann-Whitney test is most popular. It
tests the null hypothesis that the population distributions are identical. The
one-tailed p value for this test on the data in Table 1 is .05.

This p value of the Wilcoxon-Mann-Whitney test is identical to the p
value of the randomization test on the original data, and this is no coinci-
dence. The Wilcoxon-Mann-Whitney test was originally developed as a ran-
domization test on rank-transformed data (see Mann & Whitney, 1947; Wil-
coxon, 1945), and because the data in Table 1 show no overlap in the original
recovery times between the two treatment groups, there will also be no over-
lap in the ranks. Because absence of overlap always results in the smallest
possible randomization test p value, there will be no difference between a ran-
domization test on the original recovery times and a randomization test on the
rank-transformed recovery times.

Table 2 illustrates the derivation of the Wilcoxon-Mann-Whitney test as a
randomization test based on ranks, with the sum of ranks of the new treatment
as the test statistic (therefore the test is also sometimes called the “Wilcoxon
rank-sum test”). All data partitions of ranks on six recovery times are shown
in Table 2.

Thus, if the two treatments will lead to the same recovery times, the prob-
ability that the three patients having the new treatment show fastest recovery
times (ranked 1, 2, 3) is 1/20 or .05. In this example, the rank test and the ran-
domization test yield the same p value. However, due to the fact that ranks
instead of the original data are employed, in other applications a loss of infor-
mation may occur and eventually, reduce the statistical power and efficiency
(Lehmann & D’Abrera, 2006).
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Table 2
All possible data partitions of ranks on six recovery times (days) to two treatment
groups of sizes n=3 in each group

Data Partitions of ranks

Sum of ranks of the new

No. New Treatment Standard Treatment treatment
1* 1 2 3 4 5 6 6
2 1 2 4 3 5 6 7
3 1 2 5 3 4 6 8
4 1 2 6 3 4 5 9
5 1 3 4 2 5 6 8
6 1 3 5 2 4 6 9
7 1 3 6 2 4 5 10
8 1 4 5 2 3 6 10
9 1 4 6 2 3 5 11
10 1 5 6 2 3 4 12
11 2 3 4 1 5 6 9
12 2 3 5 1 4 6 10
13 2 3 6 1 4 5 11
14 2 4 5 1 3 6 11
15 2 4 6 1 3 5 12
16 2 5 6 1 3 4 13
17 3 4 5 1 2 6 12
18 3 4 6 1 2 5 13
19 3 5 6 1 2 4 14
20 4 5 6 1 2 3 15

Note. Each row represents one of the 20 data partitions, with the data partition of ranks on the original data
marked with a star (*)

Systematic versus Monte Carlo randomization tests

When all possible data partitions are exhaustively listed, the relevant RndTs are
often called systematic RndTs. However, the systematic RndTs are not always
practical. Noreen (1989, p. 14) stated that “exact randomization is feasible,
however, with present computer technology only for very small data sets”. For
instance, a systematic RndT for an experiment with 30 participants randomly
assigned to 3 treatments with 10, 10, and 10 participants in each treatment
requires 5.55 trillion arrangements of the data and corresponding calculations
of the test statistic. Even specialised statistical software and special-purpose
algorithms would have problems with this large number of computations.
When the total number of data partitions is too large, Monte Carlo RndTs are
usually implemented. Monte Carlo RndTs are not limited by the size of the
sample because they use only a subset of all possible data partitions to derive a
valid p value (Dwass, 1957; Edgington & Onghena, 2007; Manly, 1997). A few
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thousand data partitions can yield an accurate estimate of the exact p value and
a valid (i.e., conservative) significance test (Edgington, 1969).

Equivalent test statistics

One of the advantages of RndTs is that they allow researchers to use the test
statistic that is most sensitive to the effect that the researchers are interested
in. In other words, researchers are not restricted to the conventional test sta-
tistics, like # or F, but can also consider medians, ranges, quartiles, or any
other statistical measure. In the back pain example, the difference between
means of recovery times, D, was used as the test statistic. People might won-
der whether the same p value would be obtained if another test statistic had
been employed. If two test statistics always give the same p value for an
RndT, they are called equivalent test statistics (Edgington & Onghena, 2007;
Manly, 1997). For instance, one might wonder what result would be obtained
if a two-sample ¢ statistic had been used for the example data in Table 1. In
fact, the same p value would result, and it can be demonstrated that for a com-
pletely randomized design with two treatments, the difference between means
and the two-sample ¢ statistic will always give the same p values (Edgington
& Onghena, 2007).

The reason why the equivalent test statistics are useful is that they take less
time to finish the calculation by using a simpler test statistic (Edgington &
Onghena, 2007; Manly, 1997). Manly (1997, pp. 15-16) mentioned that “minor
differences such as the multiplication by a constant may become important
when the statistic used has to be evaluated thousands of times”. At the same
time, equivalent statistics also have an important theoretical role to play. They
show what part of the statistic is crucial for showing the tested effect.

One aspect we need to remember is that not all the test statistics are equiv-
alent test statistics. To the question that under what kind of circumstances two
test statistics are equivalent, Edgington and Onghena (2007, p. 43) state that
“two test statistics are equivalent if and only if they are perfectly monotoni-
cally correlated over all data permutations in the set”. In the back pain exam-
ple, we want to know whether D and the two-sample ¢ statistic are equivalent
test statistics. The formula of ¢ statistic is composed of a numerator and a
denominator. The numerator of 7, which is the difference between two means,
manifests the difference of treatment effects; the denominator is an estimate
of the variability of the numerator for parametric tests. Due to the fact that the
RndT procedure in this example generates its own distribution of Ds, this
makes the denominator irrelevant. Consequently, as ¢ decreases D must
decrease, providing the same order of ¢ and D over the data partitions. There-
fore the two test statistics will give the same p value and D is an equivalent
test statistic to 7.
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RT4Win: a new software package for RndTs

When applying RndTs in practice, researchers will inevitably encounter a
computational burden. Although examples with very small sample sizes can
be easily calculated by hand, the number of data partitions increases sharply
with an increasing number of observations. By means of computer programs,
several thousands or even millions of data partitions can be generated within
a short period. Even if the number of data partitions is gigantic, Monte Carlo
algorithms can still make RndTs practical. Therefore, suitable programs and
software packages are needed to execute RndTs.

In this article, we present a stand-alone RndTs software package,
RT4Win. RT4Win is a software package for the Windows platform with a
user-friendly interface. RT4Win provides a set of RndTs for analysing data in
many experimental designs described in Table 3.

Table 3
List of experimental designs and corresponding programs in RT4Win
Experimental Designs Programs
Between-subjects Design One-way ANOVA: Systematic Data Partition

One-way ANOVA - Equal N: Systematic Data Partition
One-way ANOVA: Monte Carlo Data Partition
Independent 7 Test: Systematic Data Partition
Independent ¢ Test: Monte Carlo Data Partition
Factorial Design Test of Main Effects: Monte Carlo Data Partition
Repeated-measures Design Repeated-measures ANOVA: Systematic Data Partition
Repeated-measures ANOVA: Monte Carlo Data Partition
Correlated ¢ Test: Systematic Data Partition
Correlated ¢ Test: Monte Carlo Data Partition
Multivariate Design Multivariate tests based on composite z scores
Correlation Product-moment Correlation: Systematic Data Partition
Product-moment Correlation: Monte Carlo Data Partition
Trend Test Correlation Trend Test: Monte Carlo Data Partition
Matching Test Matching Test: Monte Carlo Data Partition

Both systematic and Monte Carlo RndTs are available for most of the listed
designs. As to Monte Carlo RndTs, millions of data partitions can be executed
in a limited time frame, which can greatly increase the precision of the p val-
ues. In addition, RT4Win allows the users to save and load data in a common
Windows environment. The output also provides the value of conventional
test statistics such as ¢ or F for the obtained data, total number of data parti-
tions and the number of data partitions that gives a test statistic value equal to
or more extreme than the obtained one. RT4Win is free of charge and is avail-
able upon request from the authors.
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Examples of RndTs via RT4Win

To demonstrate our software package, we illustrate its use with three sets of
data.

Example 1

The following example is from Kutner, Nachtsheim, Neter, and Li (2005, pp.
723-724). A psychologist is interested in the effect of colour of paper (blue,
green, orange) on response rates for questionnaires distributed by the “wind-
shield method” in supermarket parking lots, 15 representative supermarket
parking lots were chosen in a metropolitan area and each colour was assigned
at random to five of the lots. The response rates (in per cent) are listed in
Table 4.

Table 4
Response rates (in percentages) by colours for each of the 15 parking lots
Colour Response Rates (in per cent)
Blue 28
Blue 26
Blue 31
Blue 27
Blue 35
Green 34
Green 29
Green 25
Green 31
Green 29
Orange 31
Orange 25
Orange 27
Orange 29
Orange 28

The calculation procedure should be carried out in the following steps:

1. First, the user should select the program that matches the design of the
experiment. Since this experiment intends to test the null hypothesis of no dif-
ferential effect among the three colours on response rates, the program on
RndTs for one-way ANOVA should be selected. Meanwhile, with only %
= 756756 data partitions, a systematic RndT is feasible to enumerate all par-
titions in seconds. As a result, the program “One-way ANOVA: Systematic

Data Partition” should be selected to execute the calculation (see Figure 1).
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2. After opening the program window, the user can start the data input.
Data should be input from the keyboard following the instructions at the
“instruction region” on the top of the window. First, input the number of
groups, then the number of subjects in each group, lastly the measurements
(response rates in this example) for each group.

3. After finishing the data input, one can simply click the “Calculation”
button to execute the required RndT. It is noted that the chosen statistic in this
program is

T

i
1

||.M»

1

where £ is the number of groups, 7 is the sum of all the measurements in the
ith group. As an equivalent test statistic of £, the test statistic X, _ | 7, will
yield the same p value. For this case, X, _ 1712. = 12739 for the obtained
data. This RndT yields p = .683724, with 517412 out of the total 756756
test statistics equal to or greater than 12739. Figure 2 gives the calculation

results from RT4Win.

B RT4Win

one-way AHOVA: Daka Partition
Cne-way AWMCWA - Equal M Systematic Data Partition

Factorial Design

Repeated-measures Design One-way AMOVA: Monke Carlo Data Partition m. Through th
either awvailal

Correlation Independent b Test: Monte Carlo Data Partition

Trend Test

3
3
3
Tultivariate Design 3 Independent t Test: Systematic Data Partition
3
»
»

Matching Test the Program menu. That will take you to the correct form. T
eeree e 0M the FilefOpen menu; the other is that you input the data

e

Figure 1
Screen shot on how to choose appropriate program from RT4Win

Total mimber of data partitions: | 736756

Number of data partitions with the test statistic | 17412

equal to or larger than the obtained statistic:

pvalue:  [0.683724 Fovalue: | 03018

Figure 2
Screen shot on calculation results of Example 1

As mentioned above, systematic RndTs are not always feasible. A Monte
Carlo RndT should be used instead when the number of data partitions is too
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large. The following example will show how to perform Monte Carlo RndTs
via RT4Win.

Example 2

The data of this example are from Kutner et al. (2005, pp. 685-686). The
Kenton Food Company wished to test four different package designs for a
new breakfast cereal. Nineteen stores, with approximately equal sales vol-
umes, were selected as the experimental units. Each store was randomly
assigned one of the package designs, with each package design assigned to
five stores. An accident occurred in one store during the study period, so this
store had to be dropped from the study. Hence, one of the designs was tested
in only four stores. This drop-out problem does not affect the validity of
RndTs because the store dropped out independently of the treatment assign-
ment of that store. In other words, the random assignment does not give rise
to the drop-out and RndTs are still valid. All conditions that could affect sales
were kept the same for all of the stores in the experiment. Sales, in number of
cases, were observed for the study period, and the results are recorded in
Table 5.

Table 5
Number of cases sold by stores for each of four package designs

Package Design Sales (cases sold)
A 11

O Ooguouoaoa0n00wwwww > > > >
Y
w




400 RT4WIN: A WINDOWS-BASED PROGRAM FOR RANDOMIZATION TESTS

For this example, there are
19!
51514151
possible data partitions to be considered. By using the same program as for
Example 1, we obtained an exact p value of
118464
2,933,186,256

= 2,933,186,256

= .0004

It took us 4 minutes and 38 seconds to finish this computation on RT4Win
(PC used was a DELL Optiplex 760, Intel(R) Core(TM)2 Duo E8500 proces-
sor, 3.16GHz, 3.21GB RAM). If a Monte Carlo RndT is desired, the user
should take the following steps:

1. First, the user should select the program “One-way ANOVA: Monte
Carlo Data Partition” from the menu “program” on the main window of
RT4Win.

2. After opening the program window, the user can start the data input.
The process will be identical to that in Example 1.

3. After inputting the data, the user should fill in the desired number of
data partitions. The specific number is arbitrary, but should be as large as pos-
sible, taking into account the computational speed of your computer.

4. Afterwards, one can simply click the “Calculation” button to execute
the required RndT (one can get different p values on every click of the “Cal-
culation” button since each time a different set of partitions is chosen).

Table 6 summarises the results for six different numbers of data partitions and
the associated p values.

Table 6
P values of six sets of data partitions with the exact p value given in last line — Kenton
Food Company Example
Data partitions p value
100 0.01

1000 0.001

10,000 0.0001

100,000 0.0005
1,000,000 0.00035
10,000,000 0.000302

2,933,186,256 0.00040
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Example 3

The data of this example are from Kutner et al. (2005, p. 1132). In a wine-
judging competition, four Chardonnay wines of the same vintage were judged
by six experienced judges. Each judge tasted the wines in a blind fashion, i.e.,
without knowing their identities. The order of the wine presentation was ran-
domized independently for each judge. Each wine was scored on a 40-point
scale; the higher the score, the greater is the excellence of the wine. The data
are listed in Table 7.

Table 7
Wine judging scores data for example 3
Judge Wine 1 Wine 2 Wine 3 Wine 4
1 20 24 28 28
2 15 18 23 24
3 18 19 24 23
4 26 26 30 30
5 22 24 28 26
6 19 21 27 25

The calculation procedure should be carried out in the following steps:

1. First, the user should select the program that matches the design of the
experiment. Since this experiment intends to determine the p value in a
repeated-measures design, one of the two RndTs programs for repeated-
measures design should be selected. For a repeated-measures experiment,
each of the n subjects takes all the k treatments and the total number of pos-
sible data partitions is (k)" (for details, see Edgington & Onghena, 2007,
pp- 116-117). In this example, the total number of data partitions is
(41)" = 191102976 . Program “Repeated-measures ANOVA: Systematic
Data Partition” can be selected to execute the calculation.

2. After opening the program window, the user can start the data input.
First, the user needs to input the number of participants (number of judges),
then number of treatments (number of wines), lastly the measurements under
all the treatments of each participant (wines scores).

3. When the data input is done, the user can simply click the “Calculation”
button to execute the program. It is noted that the chosen statistic in this pro-
gram is

k
>
i=1
where k is the number of treatments, 7', is the sum of all the measurements

4
on the ith treatment. As an equivalent test statistic of F, the test statistic
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Zf.cz 1712. will yield the same p value. In this example, with k£ = 4, 7, =20

F15+18+26+22+19=120, 7, =24+ 18 + 19 +26 +24 + 21 =132,
T —28+23+24+30+28+27— 160, and 74 —28+24+23+30+26+
23 = 156, the test statistic ST = (120)% + (132)% + (1602 + (156)2
81760. For all the 191102976 data partitions performed, there are 576 data
partitions that can produce a value of test statistic equal to or larger than the
obtained one. As a result, the p value is 576/191102976 = .000003 .

Besides between-subject designs and repeated-measures designs,
RT4Win also allows users to perform RndTs for factorial designs, multivari-
ate designs, correlation, trend tests, and matching and proximity experiments.
For further information on each program, users are referred to the help file
embedded in the software.

Discussion

Within the family of statistical significance tests, RndTs are not frequently
used by researchers. One of the reasons for this is probably that most of the
introductions to inferential statistics focus on classical parametric statistical
tests (¢ or F tests) and rarely include randomization tests and their rationale.
Another reason for the underutilisation of RndTs may be that RndTs rely on
computationally intensive algorithms and that most popular and common sta-
tistical software packages do not provide facilities to easily perform randomi-
zation tests. In this article, we have presented an efficient software package,
RT4Win, to fill this gap. In this section, we will discuss the advantages and
disadvantages of RndTs, other available RndTs software, the assets of our
software and suggestions for future software development.

The most important advantage of RndTs is that they do not make any
assumption regarding the probability distribution underlying the data at hand.
The validity of RndTs is only based on the random assignments of experi-
mental units to treatments. As a result, RndTs are free from the assumption of
random sampling, an assumption that lies at the heart of parametric statistical
inference, but that is unrealistic in many practical situations (Anderson, 2001;
Hunter & May, 2003; Zieffler et al., 2011). Also, RndTs are very easy to
apply and versatile, so that researchers can develop an RndT for their own
particular design (Edgington & Onghena, 2007).

It has been widely recognised that there are three important drawbacks of
RndTs: (a) they were too computationally intensive, (b) their applicability
was limited to simple scenarios, and (¢) they could be replaced by the availa-
ble classical nonparametric tests based on ranks (Welch, 1990). However, it
is fortunate to see that the above mentioned problems of RndTs have been
resolved to a large extent by the efforts of researchers from many disciplines.
Gill (2007), for example, invented a clever algorithm by using a Fourier
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expansion to count extreme cases, which decreases the computing load to
affordable proportions. Based on Gill’s algorithm, Mewhort, Johns, and Kelly
(2010) introduced an RndT for a 2 by 2 factorial design, which greatly limits
the computational load. Moreover, it is reassuring to see that RndTs are more
and more frequently applied in new and exciting research domains, such as
ERP- (event-related potential) (e.g., Fehr, Wiedenmann, & Herrmann, 2007;
Kayser, Tenke, Gates, & Bruder, 2007; Maris, 2004) and EEG- (electroen-
cephalogram) research (e.g., Henderson, Yoder, Yale, & McDuffie, 2002;
Keil, Mussweiler, & Epstude, 2006). Finally, as was mentioned earlier in this
paper, nonparametric rank methods are not the first choice if the numerical
information in the data is valid and should not be wasted (Edgington & Ong-
hena, 2007).

Before the appearance of RT4Win, three types of computer software were
available to perform RndTs. First, there are a number of computer languages
available that can be used to produce specific RndT programs. These vary
from basic programming languages such as FORTRAN (e.g., Berry &
Mielke, 1996; Berry & Mielke, 1999) to higher level languages such as SAS
(e.g., Chen & Dunlap, 1993), SPSS (e.g., Hayes, 1998), and R (Bulté & Ong-
hena, 2008; Bulté & Onghena, 2009). Second, there are some software pack-
ages solely for carrying out RndTs, such as RANDIBM (Edgington, 1995) or
SCRT (Onghena & Van Damme, 1994). However, most of this older kind of
software was designed for DOS machines and does not have state-of-the-art
interfaces. Finally, RndTs can be performed under some commercial software
packages (e.g., StatXact). Unlike the first type of computer programs that per-
form RndTs under some specific experimental contexts, RT4Win, as an inte-
grated environment, can perform RndTs to test statistical significance in large
variety of experimental contexts and is extremely fast. Unlike the second type
of software packages that perform RndTs for DOS machines, RT4Win has a
user-friendly interface that is compatible with the popular Windows platform.
A final advantage is that RT4Win is free of charge.

Although RT4Win can perform RndTs in a variety of experimental con-
texts, the facility to deal with multivariate designs is still limited. In the
present version of the software, the test statistic for multivariate ANOVA is
limited to composite z scores. It might be worthwhile to add options for
Wilks’ Lambda, Pillai-Bartlett’s Trace, Hotelling-Lawley’s Trace, and Roy’s
Greatest Root. Furthermore, extensions for discriminant analysis and canon-
ical correlation might be useful. It would also be interesting to develop more
tools so that researchers can perform simulation studies on the performance
of RndTs, which in turn give further guidance to the applications of RndTs in
specific designs. Finally, an integrated R package would be helpful. R could
have a speed disadvantage for computer-intensive statistical tests as com-
pared to RT4Win, but it has the advantage of gaining popularity among psy-
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chologists and of offering a comprehensive data-analytic environment,
including powerful visualisation and graphical tools (Kelley, 2007).
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