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TOWARDSA MENTAL PROBABILITY LOGIC

Niki PFEIFER & Gernot D. KLEITER
Universitat Salzburg, Austria

We propose probability logic as an appropriate standard of reference for eval-
uating human inferences. Probability logical accountsasfmonotonic rea-
soningwith sysTem B andconditional syllogismgmobus PONENS etc.) are
explored. Furthermore, we present categorical syllogisms widrmediate
quantifiers like the ‘MosT ...” quantifier. While most of the paper is theoreti-

cal and intended to stimulate psychological studies, we also summarize our
empirical studies on human nonmonotonic reasoning.

Introduction

This journal issue is devoted to human thinking and reasoningnaith-
sistency The present paper, though, is written within an approach that
deeply obliged to subjective probability and to a property that is at the v
core of subjective probability theory, namelyherenceWith respect to the
present paper the expectations of the reader may mislead him or her. We
neither treat an incoherent approach to human inference, nor shall we tr
explain incoherent inferences. On the contrary, we will argue that the tra
tional gold standard of human reasoning, hamely classical logic, is too str
to be an appropriate standard for everyday reasoning and that weaker sys
such as subjective probability and nhonmonotonic reasoning are more ap
priate standards with which human inference should be evaluated. Thus
will try to re-concile the reader’'s expectations and the content of our con
bution by relaxing the normative standards by which human inference
evaluated.

Why do we consider probability theory to be relevant to human inferenc
In particular, why do we consider probability theory to be relevant even
tasks that apparently do not to involve probabilities or do not explicitly me
tion uncertainties? Let us anticipate just three main reasons, the detail
which will be given in the sequel:

1. Monotonicityis the central property of the classical logical consequen
relation: the set of conclusions can only increase but not decrease
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adding further premises. This means conclusions cannot be retracte
the light of new evidence. Since retracting conclusions in the light of ne
evidence makes psychological sense, it is implausible to assume class
logic as the normative standard of reference for evaluating human r
soning - ora priori grounds.

2. Many inferences in propositional logic involve conditionals of the fbrm
A then Bin their premises. We do not think that the ordinary condition:
appearing in everyday life is the material implication of classical logi
Rather, people evaluate the probabilityBofjiven hypotheticallyA, as
suggested by Ramsey 80 years ago and recently in psychology (Evar
Over, 2004). In everyday contexts it seems to be more plausible to in
pret conditionals not by material implications, but by much weaker co
ditional probabilities.

3. Likewise, the universal &l ...") and existential (at least one .”) quan-
tifiers of predicate calculus are psychologically too strict. For the wel
known syllogismsintermediate quantifiersvere proposed in the litera-
ture. As nonmonotonic conditionals, they allow for exceptions and adr
a probabilistic interpretation.

We propose a combination of logic and probability, nanpetbability logic
as an adequate normative standard of reference.

Logic

There is a tradition of nearly one-hundred years of experimertedrc-
tive reasoningand a tradition of nearly fifty years of experimentsjuag-
ment under uncertaintyJsually, the experimental tasks and the normativ
theories of deductive reasoning are closely related to logic, while the ex
imental tasks and the normative theories of uncertain reasoning are clo
related tgorobability theory For many years both traditions were clearly sep
arated. Only recently has the psychology of deductive and of probabilis
reasoning begun to merge (Chater & Oaksford, 1999, 2004; Evans et
2003; Evans & Over, 2004; Oberauer & Wilhelm, 2003; Over & Evan
2003; Pfeifer & Kleiter, 2003, in press, 2005a; Politzer & Bourmaud, 2002
Today probabilistic principles are applied to model deductive reasoning a
likewise, principles originally developed in the tradition of deductive reaso
ing are extended to cover uncertain reasoning.

Chater and Oaksford (2004) were among the first who proposed a prc
bilistic account of Wason’s Selection Task (Oaksford & Chater, 1998), cc
ditional syllogisms (Oaksford, Chater, & Larkin, 2000), and categorical s\
logisms (Chater & Oaksford, 1999). Mental probability logic (as proposed
the present paper) is a framework to investigate human reasoning ex
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mentally and theoretically. It is in many respects closely related to t
Probability Heuristics Model (Chater & Oaksford, 2004). Probability logit
though, seems to be a more systematic approach. It explicitly combines I
and probability. Logic is the language of inferences under certainty and pr
ability logic is the language of inferences under uncertainty.

We are challenging the question of the choice of an appropriate nhorma
standard of reference for modeling and evaluating human reasoning. Wt
classical logic not an adequate standard of reference for evaluating hu
reasoning? We discuss two crucial sets of problems: one concerns the n
rial implication,A — B. The other one, which is more general, concerns tl
monotonicityproperty of the classical logical consequence relation.

Problem 1: Material Implication

The problem with the material implication is that it is too strict for moc
eling human inference. It neither allows exceptions nor does it allow unc
tainty. Furthermore, it is well known that the material implication leads
valid but highly implausible inference rules (Adams, 1975, 1998). Consic
the following list:

B .. A-B

(A-B) - A

Why are these inference rules implausible (we omit the proof of their Ic
ical validity)? Hardly anyone would infer that‘The sun is shiningiHEN It
is raining”, A — B), from “IT IS NOT THE CASE THAT. The sun is shining”,
(—A). Likewise, ‘IF The sun is shiningiHEN It is raining”, A — B), will not
be plausibly inferred from “It is raining”Bj). Subjects will not infer i The
sun is shiniNgTHEN IT IS NOT THE CASE THAT. The sun is shining” A — —A),
from “The sun is shining”,A). Should we really conclude that “The sun is
shining”, (A), from “IT IS NOT THE CASE THAT: IF The sun is shiningiHEN It
is raining”, G(A - B))? Finally, it is also very implausible to conclude tha
“IF The aeroplane is flying at tinteand The aeroplane is hit by a missile at
time t, THEN All guests at the aeroplane are rather safe at time
(CA A - B), from the conditional i The aeroplane is flying at tinteTHEN
All guests at the aeroplane are rather save attting€ — B).



74 TOWARDS A MENTAL PROBABILITY LOGIC

Such implausible, though logically valid, inferences which are cons
guences of the material implication led many authors to rethink the interp
tation of everyday reasoning with expressions of the fari\THEN B".
One attempt to avoid such problems is to combine logic and probability. |
us now turn to the second psychologically problematic property of classi
logic.

Problem 2: Monotonicity

Monotonicity is the central property of the classical logical consequen
relation: the set of conclusions can only increase but not decrease by ad
further premises. Conclusions cannot be retracted in the light of new ¢
dence. Logics that do not have this problematic property were developet
the field ofnonmonotonic reasoniriy

Nonmonotonic logics allow one - contrary to classical (monotone) logi
- to withdraw conclusions in the light of new evidence. The classical exa
ple is the “Tweety” argument: Assume as premises that birds can fly, and 1
Tweety is a bird. Therefore, you conclude that Tweety can fly. As soon as
learn that Tweety is a penguin you will withdraw the conclusion that Twee
can fly. Classical logic is monotone in the sense that adding arbitrary pren
es to arguments monotonically increases the set of conclusions, i.e. con
sions cannot be withdrawn. Since withdrawing conclusions in the light
new evidence is natural in everyday reasoning, classical logic appears f
ana priori implausible standard of reference for human reasoning.

Nonmonotonic reasoning systems are often claimed to mimic hum
common sense reasoning. Compared with the long tradition of psycholog
experiments on classical logics and syllogistics (Rips, 2002, 1994; Johns
Laird, 1999; Johnson-Laird & Byrne, 1994; Bacon et al., 2003; Newste:
2003; Morley et al., 2004), only a few studies, though, have investigated n
monotonic reasoning empirically (Benferhat et al., in press; Da Silva Ne\
et al., 2002; Ford & Billington, 2000; Ford, in press, 2004, 2005; Pfeife
2002; Pfeifer & Kleiter, 2003, in press; Pelletier & Elio, 2003; Schurz, i
press).

1 Default reasoningReiter, 1980; Poole, 1980utoepistemic (nonmonotonic reasoning)
logic (McDermott & Doyle, 1980; Moore, 1985; Konolige, 199@)rcumscription(McCarthy,
1980; Lifschitz, 1994)Defeasible reasonin{Pollock, 1994; Nute, 1994Default inheritance
reasoning Touretzky, 1986)Possibility theoryDubois & Prade, 1988; Dubois et al., 1994), and
Conditional and preferential entailment: conditional logiased (Delgrande, 1988; Schurz,
1998), preferential modebased (Kraus, Lehmann, & Magidor, 1990; Lehmann & Magidor.
1992), expectation-orderingbased (Gardenfors & Makinson, 1994), grdbabilistic entail-
mentbased approaches (Gilio, 2002; Adams, 1975; Pearl, 1988, 1990; Schurz, 1998), ju:
mention some of the most important. For an overview refer to Gabbay & Hogger (199
Antoniou (1997).
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Subjective Probability

There are several different approaches to probabifitpm a psycholog-
ical perspective it is highly plausible to comphatenanuncertain reasoning
with an approach that is “close” or “affine” to psychology. This is, no dout
the subjective approach. Since modern subjective probability theory may
be so well known, we summarize some major points that are relevant to |
chology. For details the reader is referred to Coletti & Scozzafava (2002)

Subjective probabilities are coherent descriptions of partial knowled
states. Subjective probabilities are not (objective) physical properties of
external world. Thus, the primary psychological question is how huma
process partial knowledge. The question is not how human subjects un
stand probabilities, where probabilities are conceived as physical propel
of the external world. This would lead to what we call the “psychophysi
metaphor”, comparing, e.g., actual relative frequencies with estimated r
tive frequency (Kleiter et al., 2002). The subjective approach conceives pr
abilities as a mapping of incomplete knowledge states to degrees of bel
coherently expressed by numbers between 0 and 1. Relative frequencies
proportions can be important in reducing uncertainty and updating degree
belief, but they should not be confused with probabilities. Of course, whet
human judgments and inferences actually are coherent or not, in which ¢
ditions, and to what degree, are empirical questions.

The “carrier entities” to which probabilities are assigned are propositic
or events. Propositions are either “true” or “false” and the truth values foll
the usual rules of Boolean algebra. Truth values in the contextndition-
al eventsthough, behave fundamentally different from truth values of no
conditional events.

Let A, andB; be two propositions an&|B; denote the conditional eveft
given B. We denote byA |, |B |, andl A|B;| theindicator functionof the
respective propositions, mapping the truth values of the propositions i
numbers, typically 1 (“true”) and 0 (“false”). What are the truth values of
conditional eveni\|B;? If B, is true the answer is straightforward.

2 One can distinguishbjective(e.g., classical probability, Laplace etc.; probabilities as rel
ative frequencies in the long run, von Mises) frembjective(e.g., probabilities as degrees of
belief, de Finetti (1974), Ramsey, Savage, Coletti, & Scozzafava (2002)hiéndesof objec-
tive and subjective accounts (Good, Halpern et al. (1996)). Furthermore, there are severa
ferent proposals about the entities to which probability-values are assigned: sets (
Kolmogorov (1933)), events, propositions (e.g., early Carnap), etc. Most authors start by ir
ducing absolute (one-place) probabiliti®$;), and then define conditional (two-place) proba-
bilities, P(:|-). Others (originally Popper (1994) and Rényi (1955), later Coletti, Gilio, ¢
Scozzafava) start by giving the axiomsRgf|-).
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1 if Az =1 and Bz = 1,
| Ai| B | =

What is the truth value &|B; if B; is false? For this case de Finetti propose
a third truth value “undetermined”, denoted#yy

* if AZ =1 and Bl = 0,
| 4| Bi| =
* if Az =0 and Bz =0.

An obvious consequence is that conditioning cannot be treated by the u
operators of negation, conjunction, and disjunction. There is no logical op
ator of conditioning. “Logic lacks a conditioning operator corresponding
conditional probability” (Goodman et al., 1991). This is a fundamental pro
erty (Lewis triviality result), that distinguishes conditioning from materia
implication. De Finetti’s proposal was improved by Gilio (2002) and Colet
and Scozzafava (2002). If the conditioning proposition is false, then the in
cator value ofA|B; is the probability ofA;:

1 if Al =1 and Bl = ].,
| 4| B;| = 0 : if A;=1 and B;=1,

This proposal makes it possible to determine upper and lower probabilif
by elegant and general methods of linear algebra. If the conditioning ev
turns out to be false we do not learn anything about the probabilty Diie
probability is equal to its “base rate”. It remains the same as if we wol
know nothing abouB,. Expressed in terms of bets, the bet is called off ar
the prize of the bet is payed back. A similar proposal was made by Ram
originally in 1929:

“If two people are arguing “Ip will g?” and are both in doubt as to
p, they are adding hypothetically to their stock of knowledge and
arguing on that basis abogit[...] We can say they are fixing their

degrees of belief in g given p. If p turns out false, these degrees
belief are rendered void.” (Ramsey, 1994, p. 155, Footnote)
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Subjective probability theory provides a tailor-made framework that pe
fectly fits the structure of logical inference problems. We consider a fam
of arbitrary conditional event&s= (A,|B,, ..., A,|B,), an associated probabil-
ity assessmer®R, = (p4, ..., Pn), and one further conditional eveiy, ,|B,,.;.

In the context of probability logic the setcorresponds to the premisés,
to the probabilities of the premises, ald,|B,.1 to the conclusion.

In both verity logic (i.e., logic in the classical sense) and in probabili
logic we consider a set of premises and a conclusion. In verity logic the tr
values of the premises are given and the inference problem consists in |
ing the truth value of the conclusion. In probability logic the probabilities «
the premises are given and the inference problem consists in finding
probability of the conclusion. The getorresponds to the premis@g,to the
probabilities of the premises, aAg.4|B,;, to the conclusion. The problem is
solved wherP(A,;1|B,.1) is determined. If the probabilities of the premise:
are precise (point probabilities), then the probability of the conclusion
obtained by thd&=undamental Theoremf de Finetti. If the probabilities of
the premises are imprecise (upper and lower probabilities, intervals), ther
probability of the conclusion is obtained by theorems based on generali
coherence (g-coherence, Biazzo et al., 1999, 2002).

F need not be an algebra. That is an important difference to the stanc
approach. When considering conditional events, we are not suppose!
know the probability of any other events not occurring in the premises. In’
case of a probabilistimodus ponense.g., onlyP(A|B) andP(B) are sup-
posed to be known, not the probability of any of the elementary constitue
like P(A A B). MoreoverP(AB) andP(B) need not be given in the form of
point probabilities. They may be imprecise and may be specified by up
and lower probabilities only (or may even be given in the form of interve
of a second order probability distribution). If we would suppose to know, s
P(A A B), we would actually introduce an additional premise. This would |
analogous, say, to supposing that B is true in amodus poneng verity
logic. We would not need any of the premises ofrtioelus ponent infer
the truth of the conclusion. Likewise, assuming stochastic independefice
andB would correspond to an additional premise.

The standard approach to probability theory is characterized by the <
tactical apparatus of measure theory (algelradgebras, Kolmogorov tra-
dition) and the semantical interpretation of relative frequencies in the Ic
run (von Mises tradition). In the subjective approach probability is syntac
cally processed aslimear operatorand semantically interpreted as@her-
ent degree of belief

Conceiving uncertainty in the way subjective probability theory doe
poses two questions for the psychology of uncertain reasoning: First the ¢
tactical question, do human subjects have an intuitive understanding of
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linear constraintghat govern probability theory and probability logic? And
second, how do they process their own degrees of belief and those of ¢
people?
There are two equivalent ways how to introdaoberenceFirst, by the

well-known Dutch book condition: A probability assessnient(py, ..., Py

is coherent if it avoids sure loss. Second, by the relationship to the stanc
approach: An assessment is coherent if the fafndgn be expanded to an
algebraA such thaP satisfies the Kolmogorov axioms for finite sets of event
(Coletti & Scozzafava, 2002). Coherence can be generalized to situation
which only lower and upper probabilities are given (Biazzo & Gilio, 1999)

Probability Logic

Probability logic combines probability and logic. We distinguish verit
logic and probability logic (Hailperin, 1996). Verity logic is concerned witl
the truth or the falsity of propositions and with deductive inference
Classical argument forms like tiveopus PoNeENS (A — B, A.. B), or the
MODUS TOLLENS (A - B,—B.. —A), belong to verity logic. Probability logic
is an extension of verity logic that adds probabilistic valuations to the proy
sitions involved in the inferences. It investigates the same argument form:
verity logic, but propagates probabilities of the premises to the conclusic
instead of binary truth values.

The argument forms that are best known are syllogisms. There are
kinds of syllogisms: conditional and categorical syllogisms. Conditional sy
logisms only rely on propositional calculus, categorical syllogisms requi
guantifiers.

Conditional syllogismsire part of the classical repertoire of verity logic.
Well known are the validlobus PoNENSandMoDUS TOLLENS and the invalid
DENYING THE ANTECEDENT, (A - B, —A.. —B), andAFFIRMING THE CONSE
QUENT, (A - B, B.. A). The verity versions of conditional syllogisms were
extensively investigated empirically (Evans, 1977; Kern et al., 1983; Marc
& Rips, 1979; Markovits, 1988; Rumain et al., 1983; Taplin, 1971) in expe
iments on deductive reasoning. For discussions see Evans et al. (1993),
(1994), Braine & O’'Brien (1998). Each of these verity versions has a par
lel form in probability logic.

Recently psychologists have used probabilistic models to explain ded
tive reasoning (Chater & Oaksford, 2004). Examples are Wason’s Select
Task (Oaksford & Chater, 1994), matching or set size effects (Yama, 20
Evans, 2002; Oaksford, 2002), the suppression effect ofidbhes PONENS
(Bonnefon & Hilton, 2002), categorical syllogisms (Chater & Oaksforc
1999), and the expertise of a speaker of the premises (Stevenson & C
2001). TheProbability Heuristics Mode(Chater & Oaksford, 1999, 2004) is
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of course related to our approach, but these models are clearly not equive
One difference to the probability heuristics models is that the probabilit
are often not made explicit to the subjects but are only used as paramete
the computational models. A second difference is that the probability heu
tics models are not really using probability logic. Four examples of prot
bility logical inferences are given below in the third section.

Usually logical operators are interpreted byeaty function(or valuation
function)V that assigns a truth value= {0, 1} to a (formalized) proposition.
Let A andB be arbitrary (atomic or compound) propositions. Then the veri
functionV is defined as follows (adapted from Hailperin (1996, p. 23f)):

V(A e {0,1}

(_‘A =qer. 1 — V(A)

V(AV B

)
)

V(AANB) =4 min(V(A),V(B))
) =ar. max(V(A),V(B))
)

V(A— B) =4: V(-AVDB)
where “1” and “0” can be interpreted as the truth-values “true” and “false
respectively.

We write arguments in the form of inference rules. The validity of a
inference rule is defined analogously to the validity of an argument: an inf
ence rule is valid if it is impossible to infer a false conclusion from premis
that are assumed to be true. The general form of an inference rule is:

Pl,PQ,...,Pn C,

where the literal Py, P,, ..., P," indicates the elements of the premise se
(wheren is the number of the premisesz 0,ne N). The premise set can
be empty “.. " is an indicator of the conclusion s&.stands for the con-
clusion set (there are of course infinitely many conclusions). An example
an inference rule is the following:

A B.. ArB,

3 Logically true propositions, e.g., can always be inferred from the empty premise set.
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which is read: A is a premise and B is a premise, then infé&x A B as the
conclusion. This is a mere syntactical definition of an inference rule, since
reference tdruth valuesor to anymeaningis made. Asemanticaldefinition

of an inference rule is given in terms of the verity functioiror any verity
functionV

V(P)e a, V(Py)e ay ...V(P)e a,.. V(C)e B,

whereaq, o, ..., a,, andp are elements of {0,1}.

A natural way of extending inference rules of propositional logic to infe
ence rules of propositional probability logic can be defined as follows: F
any probability functiorP

P(Py) € a4, P(Py) € ay, ...,P(P,) e a,.. P(C)e B,

whereaq, o, ..., a,, andp are real-valued intervals in [0,1].

The analogy of this definition to the definition of the inference rule
terms of the verity functiolV is apparentP replacesV and the truth-value
set {0, 1} is extended to the unit interval [0, 1], such that @ < x* < 1,
wherex« is called the lower angt the upperbound of the probability inter-
val a; (or B). In case of«x = x* we also say that; (or B) is a point proba-
bility value.

Examples of reasoning with interval-valued and imprecise probabiliti
are given in the subsequent sections. The next section gives a summal
some of our empirical studies on nonmonotonic reasoning.

Nonmonotonic Reasoning - System P

Among various formal systems of nonmonotonic reasonsYgrem P
(Adams, 1975; Kraus et al., 1990; Gilio, 2002) has been broadly acceptec
the nonmonotonic reasoning community and has gained considerable im|
tance: every nonmonotonic system should at least satisfiem P proper-
ties. sysTem pfocuses on the very general notion of nonmonoteoiudi-
tionals

a |~ (read:if o, normally),

whereo. andp stand for propositions. Contrary to the logical conditional
nonmonotonic conditionals permit exceptions: penguins are exceptions to
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generic conditional that birds normally can 8ystem pconsists of a set of
rules designed for reasoning with nonmonotonic conditionals arfd are:

e REFLEXIVITY (axiom):a |~a

e LEFT LOGICAL EQUIVALENCE: from [Fa o B anda |~y infer |~y
e RIGHT WEAKENING: from [Fa. - B andy [~a infery |-

e OR: froma [~y andp |~y infero v B |~y

e cuT. froma A B |y anda |- infero |~y

* CAUTIOUS MONOTONICITY. from a |- anda |~y infera A B |~y
e AND (derived rule): fronu [~ anda |~y infera - Ay

The rules serve as rationality postulates for nonmonotonic reasening.
TEM PiS honmonotonic, because it contains the nonmonotonic conditional t
allows for exceptions (i), and all the rules that it entails are nonmonotonic
the sense that they allow for withdrawing conclusions (ii), i.e., monotor
rules likemonotony (froma [~ infera A v |-, also known as “strength-
ening of the antecedent®jransiTiviTy (fromo |- and |y infera |-y,
also known as “hypothetical syllogism”), aonTRAPOSITION (from o |~ 3
infer - |~—a) are not a consequencesdETEM R FOR SYSTEM R concerning
preferred model semantics (Kraus et al., 1990) and infinitesimal (Adar
1975; Pearl, 1988) and non-infinitesimal probability semantics (Gilio, 20C
Schurz, 1997), a central theorem holds: they all are formally adequate,
complete and correct (Schurz, 1998, p. 67). MoreawareM Pis general in
the sense that every nonmonotonic system should at least satisfgtha P
properties. We cannot discuss further details or extensions here; see Benf
et al. (2000), Biazzo et al. (2002), and Gilio (2002).

We focus only on gorobability semanticof system p (Adams, 1975;
Schurz, 1997; Gilio, 2002). The nonmonotonic ral¢-p is interpreted as
the conditional probability?(B|o.) > 0.5. More specifically, the nonmonoton-
ic conditional is then written as |5 B, s.t.:

a | B is interpreted aBPBla) € [, X*],

4 The operators (“and”), v (“or”), — (material implication),» (material equivalence), and
— (“not”) are defined as usual, and &= B*“ denotes & implies logicallyB” (stronger than the
mere material implication).
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wherex is an element of the probability intervad [x*] and “x.” denotes
thelower and x*” denotes thaipperbound of the interval, 8 x. < x* < 1.
Gilio (2002) developed a non-infinitesimal probability semanticsfsrem

P. It provides rules for inferring the probability intervals associated with tt
conclusion from the probabilities associated with the prerhi$as. seman-
tics is based on coherence, as described above. As an example conside
AND Rule: Ifa |5 B anda |5, v, thena |5 B A y. The probability of the con-
clusion is in the interval

max(0,x +y— 1)< z< min(x, Y).

In our empirical studies afystem p (Pfeifer, 2002; Pfeifer & Kleiter,
2003, 20054, in press) we presented the premises in short vignette stories
let the subjects infer the probabilities of the conclusions. Subjects were f
to respond either in terms of point values or in terms of interval values w
lower and upper bounds. Each subject received a booklet containing a ¢
eral introduction, one example with a point, and one with interval percel
ages. Three target tasks were presented on separate pages. Eleven add
target tasks were presented in tabular form. Here is a typical example:

Please imagine the following situation: In a train station a tourist party fro
Alsace is waiting for their train connection. About this tourist party we kno\
the following:

exactly89% spealGerman.

exactly91% spealErench.
Please try to determine the percentage of this tourist party that speaks I
German and FrenchThe solution is either a point percentage or a percentay
between two boundariefdm at least ... to at most):...
a.) If you think that the correct answer is @oint percentage, please fill in
your answer here:

Point percentage

Exactly...% of the tourist party | |
speak German and French. 0 25 50 75 100 %

b.) If you think that the correct answer lies within two boundarfiesn( at
least ... to at most ),.please mark the two values here:

S Table Il of Pfeifer & Kleiter (in press) summarizes the rulesvsfrem pand the propaga-
tion rules for the probability bounds.



TOWARDS A MENTAL PROBABILITY LOGIC 83

Within the bounds of:

|
At least...%, andat most...%, I |

of the tourist party speak German

and Erench. 25 50 75 100 %

Here, the correct answer is an interval from 80 to 89%. All interval |
point responses that lie between these boundaries are coherent proba
assessments and we call theootferent intervals (or “coherent interval
responses”). These boundaries are derived from the inequality given abc

In Europe it is well known that people from Alsace are very likely t
speak both German and French. This can be regarded as a salient hel
stereotype. To control this variable we presented our subjects a tourist p
from England. Of this tourist party it is very untypical that there are ma
people that speak two languages. According to the Heuristics & Bia:
framework, subjects should infer higher values for the tourist party frc
Alsace compared with the tourist party from England. Our data did not s
port this hypothesis. The subjects used similar strategies for solving the p|
lems and were not influenced by the representativeness heuristic that
varied in the premises. This may be due to the fact that the subjects v
asked to think hard.

Let us stress that our tasks allow for investigatinglakeer probability
bound: to our knowledge, the lower probability bounds have been neglec
in the psychological literature (the conjunction fallacy is a violation of tf
upper bound only). The lower probability BfA A B) is greater than zero if
P(A) + P(B) > 1. IfP(A) =P(B) = .8, e.g.P(AAB)=(8+.8) —1=.6.
Subjects’ lower bounds can be below, within, or above the coherent interv
and the subjects’ upper bounds can be above, within or below the cohe
intervals. Six possible categories of interval responses result (cf. Figure
too wide intervals (a), only the upper (b) or only the lower bound is coher
(c), the whole interval is below (d) or above (f) the coherent interval (e).

In our studies on thenp-Rule we found a pattern of results that was cor
sistent over all tasks. The mean frequency of coherent interval responses
all 14 tasks was 25.51 € 40,SD = 3.74). That is, 63.93% of the subjects
responded coherently. Because the coherent category contains the ma,
of responses compared with the other five categories of the possible inco
ent intervals, this may be interpreted as a good agreement of our sub
with the rationality norms. We found clearly more violations of the lowe
bound (frequencies in categories (b) and (d)) than of the upper bound. -
is different from the results reported in the Heuristics & Biases traditi
(Kahneman et al., 1982), where subjects committed upper bound violati
(conjunction fallacies). Too wide intervals (category (a)) are rather seldc
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Figure 1.Categories of possible interval responses.

Coherent interval responses (€). Incoherent interval responses: too wide intervals
intervals with both bounds too low (d) or too high (f), intervals where only the upp
(b) or only the lower bound (c) are coherent.

For details see Pfeifer and Kleiter (in press). The frequency of coher
responses does not depend upon the size of the normative interval: in
task, the coherent interval was 62-63% and 23 of 40 subjects respon
coherently. In another task, the coherent interval was 28 times larger (
63%) and again 24 of 40 subjects responded coherently.

Besides thanp Rule, we investigated th&FT LOGICAL EQUIVALENCE, the
RIGHT WEAKENING, theor and thecauTious monoTONICITY Rule of SYSTEM P
(Pfeifer & Kleiter, in press, 2005a, 2003; Pfeifer, 2002). In_t#we LOGICAL
EQUIVALENCE task 95% of the subjects € 20) responded coherent lower and
coherent upper bounds. The result was replicated in a second experir
(Pfeifer & Kleiter, in press). A similar result was found in a study on th
RIGHT WEAKENING Rule where 90% of the subjects £ 20) gave interval
responses within the normative lower and upper bounds. 56.80% of th
subjects gave the normative lower and the normative upper bounds (Pfe
& Kleiter, 2005a). Thus, for both thesFT LoGICAL EQUIVALENCE and the
RIGHT WEAKENING Rule good agreement was found betweesrtem pand the
actual inferences of the subjects.

In another experiment, we compared th®TioUS MONOTONICITY Rule
with its “incautious” monotonic counterpart, tilenotoniciTy Rule, that is
not contained irsYsTEM R The second premise of theugious MONOTONIG
ITY Rule froma |-p anda |~y infera A B |~y) was omitted in theonoT-
oNicITy condition from o |~ infer a A y |~B). The investigation of the
MONOTONICITY Rule is of special interest, since—contrary to the ruleysf
TEM P—only the non-informative unit interval, [0, 1], can be inferred what
ever the probability value of the premise is. We found that our subjects wi
sensitive to the non-informativeness of thenotoniciTy Rule: subjects
inferred wide intervals with bounds relatively close to 0 and 100%. In acc
dance with our previous results, the data suggest that people reason not
notonically: the subjects in thenuTious monoTONICITY condition inferred
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significantly tighter intervals and close to the coherent intervals compa
with the subjects in the incautiousonoToniciTY condition (Pfeifer &
Kleiter, 2005a).

Overall, we observed good agreement between the results and the prt
tions of the probability interpretation efsTem R The results corroborated
our hypothesis that nonmonotonic reasoning is a plausible candidate
modeling human reasoning. The conditionals of the ferfp are associ-
ated with high probabilities. We think that this is the reason for our findi
that humans tend to violate lower probability bounds more often as comps
with upper bounds.

The following list summarizes our studies orsTem p(Pfeifer & Kleiter,
in press, 2005a, 2003):

e Good overall agreement wWilysTem P

e AND Rule:
— Far less upper bound violations (conjunction fallacies) than low
bound violations

¢ Good agreement of theonoToniciTY and the cautiougoNoToNICITY rules:
— Intervals of themonoTtonicITY Rule are greater thagauTtious
MONOTONICITY Rule

¢ orRule: relatively good agreement
e LEFT LOGICAL EQUIVALENCE Rule: very good agreement
e RIGHT WEAKENING Rule: very good agreement

Our studies on the probabilistic interpretationseéTem pPsuggest nonmo-
notonic reasoning as a plausible candidate for a theory of human reaso
not only at the normative but also at the descriptive level.

Conditional Syllogisms

In this section we give four examples of probability logic “at work”. A:
we are not aware of empirical data of the probability logical versions of the
examples, we focus on the formal aspects only.

There are two probabilistic forms of theodus ponendepending on how
the “F A THEN C” connective in the first premise is interpreted, whether (
as a conditional proposition or (ii) as a material implication. The differen
between the two interpretations was emphasized by Karl Popper long ¢
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We present thevobus poneENsand themobus ToLLENS and two of their
invalid counterparts in their conditional and material form. As mentione
above, the Probability Heuristics Model (Chater & Oaksford, 2004) is relz
ed but not equivalent to probability logic. Let A and C be proposition
“antecedent” and “consequent”, respectively.

Modus ponens
1. Verity form
A—-C/,A F C (logically valid).
2. Conditional proposition (Hailperin, 1996: 232)
P(C|A)=p,P(A)=q + P(C)e€lpg,1-(1-p)gl.

Numerical example: From = .9 andqg = .5 we conclud®(C)
[.45, .95] .

3. Material implication (Hailperin, 1996: 203f)
P(A—-C)=p,P(A)=q F P(C)€max(0,p+q—1),p].

Numerical example: From = .9 andqg = .5 we conclud®(C)
[.40, .90] .

4. Probability Heuristics Model (Chater & Oaksford, 2004)
P(C|A)=1—¢,

where ¢ is the probability of exceptions of the dependenc
betweerA andC.

5. The non-probabilistimobus PoNENsis actually endorsed by 89-
10096 of the subjects.

WhenP(A) = q = 1, that is, when the “instantiating data” are given fo
sure, the conditional proposition and the material implication interva

6 The percentages are taken from Evans et al. (1993, p. 36, Table 2.4), where seven st
of the non-probabilistic (material) versions are summarized. Evans et al. selected studies !
broad similarity in procedure. 89% endorsement was found in a study with abstract materic
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coincide. When both premises have the probability .5, them#ierial
implication gives the interval [0, .5] while conditioning gives the sym
metric interval [.25, .75]. The differences between the upper and f
lower probabilities of both forms are the same, namelypty+p — g.
Denying the antecedent
1. Verity form
A—-C,—-A t -—C (not logically valid).
2. Conditional proposition

P(C|A)=p,P(~A)=q + P(=C)e[l-q—p(l-gq),1-p(l-q)

Numerical example: From= .9 andg = .5 we conclud®(-C) e
[.05, .55] .

3. Material implication
P(C —A)=p,P(-A)=q F P(C)e[l—pminl+q—p)].

Numerical example: From= .9 andg = .5 we conclud®(—C) e
[.10, .60] .

4. Probability Heuristics Model

1—0b—ae

P(~Cl-d) =~

5. The non-probabilisti©OENYING THE ANTECEDENT is endorsed by
17-73% of subjects.

Affirming the consequent

1. Verity form

A—-C,C ¥ A (not logically valid).

717% endorsement was found in a study with concrete material (Evans et al., 1993, p.
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2. Conditional proposition

P(CJA)=p,P(C)=q + P(A)e {Oﬂnin (ﬂl—q)} .
pl-p

Numerical example: From= .9 andg = .5 we conclud®(—C)
[0, .56].
The argument form requires a kind of “inverse probability”
reminding us at first sight of Bayes’ Theorem. Bdbe a disease
andC be a symptom. We know the conditional probability of the
symptom given the diseasB(C|A), and the probability of the
symptom to be preser®(A). What can we say about the proba-
bility of the disease? The answer is tricky. When the sympto
probability q is greater thamp and close to one, the probability
interval of the disease is getting smaller and smaller and is fina
approaching zero. The upper probability obtains a maximu
whenq = p. We see thahFFIRMING THE CONSEQUENTIS actually
verydifferent from Bayes’ Theorem.

3. Material implication

P(A-C)=p,P(C)=q + P(A)e[l—-p,min(l,14+q—p).

Numerical example: From = .9 andqg = .5 we conclud®(A)
[.10, .60].

4. Probability Heuristics Model

_ a(l —e)

pje) = S5

where a = P(A),b = P(C) and e = P(-~C|A).

5. The non-probabilistiaFFIRMING THE CONSEQUENTIS endorsed by
23-75% of subjects (Evans et al., 1993, p. 36).

Modus tollens

1. Verity form

A—C,-C + =A (logically valid).
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2. Conditional probability
1—(1-
P(C|A) =p,P(-C)=q + P(-A)¢€ [% 1} :

Numerical example: From= .9 andg = .5 we conclud®(—A) e
[.44, 1].

3. Material implication
P(A—C)=p,P(-C)=q F P(=4) € [max(0,p+q—1),p]

Numerical example: From= .9 andg = .5 we conclud®(—A) e
[.40, .90].

4. Probability Heuristics Model

1—b—ae

P(-AI-C) = ———

5. The non-probabilistimobus ToLLENs is endorsed by 41-81% of
subjects (Evans et al., 1993, p. 36).

The conditional syllogisms are just a selection of simple argument forr
There are (infinitely) many others, of course.

We note an interesting difference when the data are given foresare)(
While in the conditional probability interpretation the conclusion holds wif
a probability of 1, in the material implication interpretation the conclusic
holds with the probability of the rule only.

Categorical Syllogisms -
Intermediate Quantifiers in Syllogistic Reasoning

There is an ongoing long tradition of psychological studies on classi
syllogisms (Chater & Oaksford, 1999; Johnson-Laird, 1999; Bacon et
2003; Geurts, 2003; Newstead, 2003; Morley et al., 2004; Politzer, 20
Revlin et al., 2005). As with classical logic, we think that syllogistics is n
an appropriate standard of reference for evaluating human reason
Specifically, the quantifiers involved in syllogistic reasoning are either t
strict or too weak. On the one hand, the all-quantifier is too strict becaus
does not allow foexceptions- like the material implication! On the other
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hand, the existential quantifier is too weak because it quantifies only over
least) one individual. Such quantifiers hardly ever occur in everyday life re
soning. Quantifications that - at least implicitly - actually occur in everyde
life reasoning like fnost...”, “almost-all ...”, or “90 percent...” are not
expressible in traditional syllogistics. Since such quantifiers lie “in-betweel
the existential and the all-quantifier they are caitgédrmediate quantifiers
(Peterson, 2000). Intermediate quantifiers are promising candidates
investigating and evaluating human syllogistic reasoning (Pfeifer & Kleite
2005b). We do not have empirical data yet. We sketch a formal systen
intermediate quantifiers to motivate empirical studies.

Let us summarize briefly some facts about classical syllogisms. A syl
gism is a two premise argument that consists of three out of four sente
types, ormoods(Table 1). The order of the predicates involved is regimen
ed by the fouffigures(Table 2). This leads to 256 possible syllogi$nos,
which 24 aresyllogistically valid. From a predicate logical point of view,
only 15 syllogisms argredicate-logically valid All 15 predicate logically
valid syllogisms are also syllogistically valid. The reason is that in syllogi
tics you can deducsiPfrom SaP i.e.,

Vo(Sx — Px) Fgu  Jz(Sxz A Px)

This holds because in syllogistics it is implicitly assumed that the subj
term Sxis not empty. This assumption is called “existential import”. In prec
icate logic,VX(Sx — Px) does not entalix(SxA Px). The reason is well
known: In predicate logic, formulae likéx(Sx - PX) can be “vacuously
true”. This is the case when there isx®uch thak has the propert$, i.e.,
when the antecedent of the implication within the scope of the univer
quantifier is “empty”. Then, clearlgx(Sx A Px) is false (since-3xSxis
assumed). Hence,

Vo(Sx — Px) ¥Fp o 3x(Sc A Px)

8 43 = 64 ways of constituting a two-premise argument (2 for the premises, 1 for the ct
clusion) by four moods (A, 1, E, O). Multiply 64 by the four figures gives 64 x 4 = 256 possib
syllogisms.
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However, if we make an existential assumption explicit, we get:

Table 1.Moods involved in traditional syllogisms.

Mood name Notation Read
Universal affirmative(A) SaP All SareP
Particular affirmative(l) SiP SomeSareP
Universal negativgE) SeP All Sare notP
Particular negative(O) SoP  SomeSare notP

VX(Sx— PX) A IXSX IX(SXA PX)

|_pl

Do subjects make the existential import? How good are subjects in de
mining validity? Subjects are rather good at determining validity: the !
valid syllogisms are judged as valid more often (51% of the time on avera
than invalid syllogisms (11%; Chater & Oaksford, 1999). We reanalyzed
data summarized by Geurts (2003) and we distinguished syllogistic
predicate-logical validity. The distinction reveals that there is a higher p
centage of endorsement with respect to all predicate logically valid syl
gisms (75.13%) than with respect to all syllogistically valid syllogism
(50.67%). Those syllogisms that are syllogistically but not predicate-logic
ly valid are endorsed by only 9.89 % of the subjects. This is close to the |
centage of the endorsement of all syllogisticatlyalid syllogisms (11%).
This finding is counter-intuitive (why should subjects not make the existe
tial import?). We don't have an explanation.

An important factor for the difficulty of a syllogism problem is the figure
type: syllogisms of Figure 1 are the easiest, of Figure 4 the hardest, and t
of Figures 2 and 3 are in between (Geurts, 2003, p. 229). The two class
psychological theories of reasoning - ttmental modetheory (Johnson-
Laird & Byrne, 1994; Johnson-Laird, 1999) and iental ruletheory (Rips,
1994; Braine & O'Brien, 1998) - try to explain these findings.

Intermediate quantifiers are quantifiers “between” the all quantifier a
the existential quantifier. Examples of intermediate quantifierélanest-all
S are P, Most S are P, Many S arerFractionatedquantifiersn/m S are P
We think that the traditional quantifiers are too strict to model human re
soning: sentences of the foll S are Phardly ever occur in everyday life
reasoning. Again, there aagpriori grounds for preferring less strict quanti-
fiers for modeling human reasoning.
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Table 2.

The four figures of syllogisms. S, M, and P are the subject, middle, and predic
term, respectively.

Figure 1  Figure 2 Figure 3  Figure 4
Premise 1 MP PM MP PM
Premise 2 SM SM MS MS
Conclusion E _SP _SP _SP

Intermediate quantifiers have hardly been investigated by psychologi:
Exceptions are the logic-based approach by Geurts (2003) and Chater
Oaksford’s (1999) Probability Heuristics Model. We will not discuss thes
approaches here. Studies on probability judgment can be close to studie
fractionated quantifiers.

Peterson (2000) provides algorithms to evaluate syllogisms with intern
diate quantifiers. These algorithms amrectandcompletewith respect to
arbitrarily many intermediate quantifier syllogisms ($/are R 2/5S are R
n/m S are P...). How are intermediate quantifiers interpreted? Consider tl
following Venn diagram:

(NN

M

S M, andP represent the subject, middle, and predicate terms, resp
tively. Each term represents a class of objects $tblass, theP-class, and
theM-class).g; ..., hlabel the cardinality of the eight possible subclasses
objects.

Most S are Hs then interpreted by the inequallly+ e > a + d, where
(b= 0 ore= 0). The “where ...” clause makes the existential import explic
it. Accordingly, Almost-all S are Rs interpreted ab + e >> a + d,° where

9“>>" is read as “greatly exceeds”.
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(b= 0 or ex 0), andMany S are Rs—(a+d>>b +e), where b= 0 ore= 0).

“Exactly m/n of the S are’Fs defined as “f/nof theSareP) and l%n
S are—P)” (Peterson, 2000, p. 208).

Under this interpretation the traditional square of oppositions can be g
eralized as in Table 3. Lists of valid syllogisms with intermediate quantifie
and easy methods of proving their validity are given by Peterson (20C
Finally, we note that Peterson’s logic of intermediate quantifiers can ea:
be related to a probability interpretation based on relative frequencies.

A difference between the Probability Heuristics Model of syllogistic re:
soning and probability logic is whether independence assumptions are
or not. Chater and Oaksford (1999, p. 244) assume for their Probabi
Heuristics Model of syllogistic reasoning conditional independence: the €
terms (subject and predicate term) are independent given the middle terr
probability logic, this assumption is not made.

Concluding Remarks

We have raised the fundamental question of the choice of an appropr
normative standard of reference for evaluating human reasoning. We trie
show why classical logic alone should not serve as a standard. Furtherm
we motivated the psychological advantages of subjective probability the
over objective probabilities. After introducing probability logic, we explore
the nonmonotonicsystem P and summarized our empirical studies
Conditional syllogisms, like theobus PONENS were probabilitized in the
third section in both versions, material and conditional. Finally, we prese
ed categorical syllogisms with intermediate quantifiers, like thest ...”
quantifier.

Stanovich and West (1999; 2000) found that more intelligent subjects
doing better in reasoning under certainty and uncertainty tasks than less i
ligent subjects. Now, more intelligent subjects may be supposed to be n
rational than less intelligent ones. Thus, the correlation between intellige
and performance may be taken as a supporting criterion that an approp
normative model was chosen to evaluate performance. So why do we wal
consider normative models that are weaker than those used to evaluate
soning performance? Do the weaker models make errors in human reasc
to “disappear’? The answer is clearly no in the domain of reasoning un
uncertainty. A conjunction fallacy remains a conjunction fallacy, neglectir
base rates remains a neglect (Kleiter et al., 1997), etc. Though, it is not
same when probabilistic models are applied to “purely” logical tasks. Usi
a probabilistic model to Wason'’s selection task does indeed lead to diffe!
“normative” solutions than using classical logic. The probabilities used in't
probabilistic model were not mentioned in the task description given to 1
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Table 3.

Generalized squares of opposition (Adapted from Peterson, 1985: 351ff). The s
lines indicate contradictions, dashed contraries, dotted subcontraries, and arrows
alternations (i.e. immediate entailments), respectivelg. the negation.

Quantifier Affirmative Negative

Universal A: Al Sare Pr —————-——-——— E: All S are =P

! 1
Predominant P: Almost-all S are P\ — - - - - - — B: Almost-all S are =P

! !
Majority T: Most S are P— -\ - - - - - - D: Most S are =P

! !

1 1
Fraction (n > More-than-*~" S are P - — More-than-*== S are =P
2m)

1 1

= S are P = S are =P

1 1

1 1
Common K: Many S are P G: Many S are - P

! !
Particular I: Some S are P b O: Some S are =P

subjects. In our experiments we provided the subjects with the relevant pi
abilities.

We do not want to completely discard classical logic as a normative st:
dard of reference for human reasoning. This is obvious from the fact that s
jective probability theory is based on the classical propositional calculus.
a similar way as probability theory presupposes propositional calculus ng
probabilistic reasoning presupposes a basic understanding of crisp trutl
falsity of propositions and of the elementary relationships between th
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truth values in a set of propositions. Moreover, if the premises are given
sure and known to be true, then we consider classical logic as the appre
ate standard of reference. In everyday reasoning premises are nearly r
known for sure, and then probability logic is the appropriate standards of |
erence.

Probability logic represents the appropriate class of models to evalt
human inference under uncertainty. If “degrees of belief” really matter
human reasoning, then we should make them explicit in our models.
guestion whether humans are rational or not is not our main motivation (
it been a fruitful question after all?). The question is how to appropriats
model reasoning under conditions of partial and incomplete knowledge
to trace descriptive theories of the according cognitive processes. The
what we mean by “mental probability logic”.

Probability logic is in no way restricted to such simple kinds of inference
It is in fact a highly general approach to probabilistic inference. An alterr
tively powerful and general approach to probabilistic inferencgragghical
independence model8ayesian networks are the best known subclass
these models. The variables instantiated by observations together with
probabilities and conditional independence relations build the premises.
remaining variables are candidates for conclusions. Actually, the role of
variables is not that simple and the formulation of probabilistic inference
Bayesian networks requires the properties of conditional independence,
theory of Markov properties, etc.

A major difference between probability logic and graphical models is tt
in graphical modelprobabilities are assumed to be knowhile in proba-
bility logic the information may be incomplet&hus, the usual graphical
models procesgoint probabilitiesand do not model imprecision.
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